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Tensor Networks Introduction 

Tensor networks were introduced to efficiently represent tensors with

exponentially many parameters by expressing them as a network

contraction of smaller tensors.

They were developed in the context of many-body quantum physics to

simulate strongly correlated systems. However, over time their utility has

proven to extenst beyond quantum mechanics.
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Quantics Tensor Trains Introduction 

Quantic Tensor Trains (QTT) or Matrix Product States (MPS) are one

dimensional tensor networks that:

• The efficient representation ground state of one-dimensional gapped

Hamiltonians, solutions of DMRG.

• Represents strongly correlated one-dimensional many-body systems

and Markov chains.

In reccent years, it has been shown that they are also able to compress a

wide set of analytical one-dimensional functions.
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Quantics Tensor Trains Introduction 

To encode an analytical function 𝑓(𝑥) : [𝑎, 𝑏) → ℝ we first discretize your

domain 𝑥𝑖 ∈ Λ and we try to compress 𝑇𝑥𝑖 = 𝑓({𝑥𝑖}𝑥𝑖∈Λ).

The ability to compress the MPS is dictated by the bond dimension (𝜒),
which will determine whether the compression is efficient.
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Quantics Tensor Trains Introduction 

To represent operators that act onto QTTs, there is a

generalization of the MPS, the matrix product operator (MPO).

If we have an MPS with bond dimension 𝜒 and an MPO with

bond dimension 𝑘, then the MPO-MPS contraction scales as

𝒪(4 log2(𝑁𝑔𝑟𝑖𝑑)(𝜒2𝑘2 + 𝜒3𝑘))

Aleix Bou-Comas QTT for solving Gross-Pitaevskii equation | arXiv:2507.03134 10th October 2025 5 / 32



Gross-Pitaevskii Equation Introduction 

The Gross-Pitaevskii equation is a nonlinear Schrödinger equation that

describes dilute Bose gases. It is widely used to model Bose Einstain

condensates (BEC).
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Gross-Pitaevskii Equation Introduction 

The simplest Gross-Pitaevskii equation (GPE) includes a BEC interacting

with an external potential, and it follows

𝑖+ℎ+𝜕𝑡𝜓(𝑥, 𝑡) = (𝐻̂0 + 𝑔𝑁 |𝜓(𝑥, 𝑡)|2)𝜓(𝑥, 𝑡)
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The GPE can be generalized to different physical scenarios

• Long-range interactions: We assume the mean-field approximation of

a two-body interacion, which follows the convolution

𝑉𝐿𝑅(𝑥) = ∫𝑑𝑥′ |𝜓(𝑥′, 𝑡)|2 𝑊(|𝑥 − 𝑥′|)
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Gross-Pitaevskii Equation Introduction 

The simplest Gross-Pitaevskii equation (GPE) includes a BEC interacting

with an external potential, and it follows

𝑖+ℎ+𝜕𝑡𝜓(𝑥, 𝑡) = (𝐻̂0 + 𝑔𝑁 |𝜓(𝑥, 𝑡)|2)𝜓(𝑥, 𝑡)

The GPE can be generalized to different physical scenarios

• Different BEC species: The GPE equation can track the evolution of M

different BEC species, this equation sometimes is called coupled GPE

𝑖+ℎ+𝜕𝑡𝜓𝑖(𝑥,𝑡) = (𝐻̂0 +∑
𝑀

𝑗=0
𝑔𝑖𝑗√𝑁𝑖𝑁𝑗 |𝜓𝑗(𝑥,𝑡)|2)𝜓𝑖(𝑥,𝑡) +∑

𝑗≠𝑖
𝜆𝑖𝑗𝜓𝑗(𝑥)
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Gross-Pitaevskii Equation Introduction 

To simulate the GPE with QTT we need the following elements

1. Represent the linear differential equation

1. Initial wave-function (𝜓0(𝑥))
2. Linear Hamilonian (𝐻0): Kinetic and local potential terms
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Gross-Pitaevskii Equation Introduction 

To simulate the GPE with QTT we need the following elements

1. Represent the linear differential equation

1. Initial wave-function (𝜓0(𝑥))
2. Linear Hamilonian (𝐻0): Kinetic and local potential terms

2. Represent the non-linear term 𝑔|𝜓(𝑥)|
3. Represent the long-range interaction

4. Represent different BEC species

1. Generalize the linear Hamiltonian

2. Generalize the non-linear term

3. Create the tunneling term 𝜆𝑖𝑗𝜓𝑗(𝑥)
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QTT Toolbox



Load analytical functions into MPS QTT Toolbox 

To load an analytical function 𝑓(𝑥) : ℝ → ℝ into a MPS there are several

methods.

1. Brute force: 𝒪(𝑁𝑔𝑟𝑖𝑑) evaluations

2. Tensor Cross Interpolation: 𝒪(log2(𝑁𝑔𝑟𝑖𝑑)) evaluations

3. Chebyshev Interpolation: 𝒪(log2(𝑁𝑔𝑟𝑖𝑑)) evaluations

The wavefunction can be loaded into an MPS with any of these methods,

the same happens with the local potential which can be then updated to a

MPO through Kroenecker 𝛿’s.
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Translation operators QTT Toolbox 

The translation operator of a function

𝒯𝑎(𝑓(𝑥)) = ∫𝑑𝑥′𝛿(𝑥′ − (𝑥 − 𝑎)) = 𝑓(𝑥 − 𝑎)

can be implemented through the ripple carry algorithm and corresponds to

an MPO of bond dimension (𝜒 = 2).
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Convolution operators QTT Toolbox 

The convolution operator transforms a function

𝒞(𝑓(𝑥)) = ∫𝑑𝑥′𝛿(𝑥′ − (𝑥 − 𝑦)) = 𝑓(𝑥 − 𝑦)

can be implemented through the ripple carry algorithm and corresponds to

a generalized MPO (with 3 external legs) of bond dimension (𝜒 = 2).
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Differential operator QTT Toolbox 

We can create approximate the differential operator through central finite

differences,

𝑓 ′(𝑥) = 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
ℎ

This expression can be constructed with the translation operators and 𝛿-

functions.
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Non-linearlity QTT Toolbox 

The difference between the Schrödinger equation and the GPE are the

non-linear interactions, the terms |𝜓(𝑥)|2. The term can be created

upgrading one 𝜓(𝑥) to an MPO (with Kroenecker 𝛿’s) and then perform

MPO-MPS contraction.

This operation is often the bottle-neck of the simulations.

It scales as 𝒪(8 log2(𝑁𝑔𝑟𝑖𝑑)𝜒4). There are other possible

options like TCI or the paper “Tensor Train

multiplication” by A. A. Michailidis et al. (2024).
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Long-Range Potential QTT Toolbox 

To create a long-range potential of the form

𝑉𝐿𝑅(𝑥) = ∫𝑑𝑥′𝑊(𝑥 − 𝑥′)|𝜓(𝑥′)|2

The long-range potential can be created with 3 steps,

1. Load the potential shape 𝑊(𝑥).
2. Use the convolution operator to create 𝑊(𝑥 − 𝑥′).
3. Perform the MPO-MPS contraction with |𝜓(𝑥)|2 to

create 𝑉𝐿𝑅(𝑥).
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Multiple BEC species QTT Toolbox 

To solve the multiple species Gross-Pitaevskii we

encode the different species in the sites of the

Tensor Train. If we have 𝑀  species and

𝑎 ∈ {1,…,𝑀}. Writing

𝑎 = ∑
log2(𝑀)

𝑗=0
𝑎𝑖2𝑖

The MPS can be separated in a part involving the

different BEC species and another that takes into

account the different degrees of freedom.
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Multiple BEC species QTT Toolbox 

Now, we need to adequate all the terms in the

cGPE to work in this set-up.

1. Local Hamiltonian: all species act

individually therefore, there are no correlations

between species and spatial degrees of freedom.

2. Tunneling term: There is only mixing of

different species, there is no action in space.

Therefore we only need to turn the tunneling

matrix (𝜆𝑖𝑗) to the MPO, Λ.
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Multiple BEC species QTT Toolbox 

The last term that we need to adapt is the

interaction term. On the spatial sites we need to

introduce the Kroenecker 𝛿’s while the species part

we need to turn the interaction matrix (𝑔𝑖𝑗) into an

MPO (𝐺).
These elements allow us to create the generalized

MPO to compute the non-linear interaction term.
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Ground State QTT Toolbox 

The ground state of the GPE is found through imaginary time evolution,

𝜓𝑔𝑠(𝑥) = lim
𝜏→∞

exp(−𝜏𝐻̂𝐺𝑃)|𝜓0⟩

√⟨𝜓0| exp(−𝜏𝐻̂𝐺𝑃)|𝜓0⟩

which can be found iteratively by

𝜓𝑛 = 𝜓𝑛−1 − 𝑑𝜏𝐻̂𝐺𝑃𝜓𝑛−1; 𝜓𝑛 = 𝜓𝑛

√∫𝑑𝑥 |𝜓𝑛|2

We evolve it until energy convergence:

𝐸 = ∫𝑑𝑥(𝜓∗
𝑛𝐻̂𝐺𝑃𝜓𝑛 − 1

2𝑔𝑁 |𝜓𝑛|4)
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Time Evolution QTT Toolbox 

The Runge-Kutta 4 (RK4) is a method to solve any initial value problem

𝜕𝑡𝜓 = 𝑓(𝜓, 𝑡); 𝜓(𝑥, 0) = 𝜓0(𝑥)

𝑓(𝜓, 𝑡) = −𝑖(−1
2
𝜕𝑥𝑥 + 𝑉 + 𝑔𝑁|𝜓(𝑥)|2)𝜓(𝑥)

The RK4 solver finds 𝜓(𝑡 + 𝑑𝑡) as a function of 𝜓(𝑡) by solving

𝜓(𝑡 + 𝑑𝑡) = 𝜓(𝑡) + 𝑑𝑡
6 (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)

𝑘1 = 𝑓(𝜓(𝑡), 𝑡); 𝑘2 = 𝑓(𝜓(𝑡) + 𝑑𝑡
2 ⋅ 𝑘1, 𝑡 + 𝑑𝑡

2 )
𝑘3 = 𝑓(𝜓(𝑡) + 𝑑𝑡

2 ⋅ 𝑘2, 𝑡 + 𝑑𝑡
2 ); 𝑘4 = 𝑓(𝜓(𝑡) + 𝑑𝑡 ⋅ 𝑘3, 𝑡 + 𝑑𝑡)
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Applications



Double-well potential ground state Applications 

We describe the ground state of bosons in an harmonic trap experiencing

a Gaussian barrier at the center 𝑥 = 0.

𝐻̂0 = −1
2
𝜕𝑥𝑥 +

1
2
𝑥2 + 𝜅exp(−𝑥2)

𝜓0(𝑥) is the Thomas-Fermi distribution.
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Long-range potential Applications 

Long-range interactions induced by Ryberg-dressed interactions on the

ground state of a BEC. The induced interactions follow

𝑊(𝑟) = 𝛽 𝐶6
𝑅6
𝐵 + 𝑟6

If the radius of the BEC is smaller than the blockade radius, the Rydberg-

dressed interaction result in a non-linear potential

𝑉𝐿𝑅 = ∫𝑑𝑥 |𝜓(𝑥)|2 𝑊(𝑥 − 𝑥′)
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Long-range potential Applications 

To measure the effect of the long-range interactions the proposed set-up

1. Prepare the ground state in an harmonic trap with lasers turned on.

2. The lasers are switched-off and the system evolves under the Gross-

Pitaevskii equation.
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Long-range potential Applications 

After the quench, the wavefunction begins breathing oscillations whose

frequency depends on 𝛽 and the amplitude on 𝑔𝑁 . The breathing

oscillations can be measured by computing evolution of the standard

devitaion 𝜎(𝑡)𝜎(0) .
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Multiple species Applications 

In this case, we look at the real time evolution of the coupled Gross-

Pitaevskii equation.

𝑖+ℎ+𝜕𝑡𝜓𝑖(𝑥,𝑡) = (𝐻̂0 +∑
𝑀

𝑗=0
𝑔𝑖𝑗√𝑁𝑖𝑁𝑗 |𝜓𝑗(𝑥,𝑡)|2)𝜓𝑖(𝑥,𝑡) +∑

𝑗≠𝑖
𝜆𝜓𝑗(𝑥)

In this study 𝑔𝑖𝑖 = 1 and 𝑔𝑖𝑗 = 𝑔 otherwise. The initial wave-function is

𝜓0𝑗 =
1
2
sech(𝑥 − 𝜇𝑗)𝑒𝑖

𝑝0𝑗
4 𝑥
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Multiple species Applications 

Results for different coupled GPE. Left and

right panels correspond to different species.

(a-b) Non-interacting GPE.

(c-d) Non-interacting 𝑝0 ≠ 0

(e-f) Tunneling between species

(g-h) Non-linear interaction between

species.
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Thanks for your attention!
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