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Our goal
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Figure: H2 energy for different basis sets.
The best orbitals get the accuracy of the T at the price of the D
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The quantum chemistry problem

Example : H2O molecule

Input : Fixed nuclei positions

Output : Ground state energy
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The quantum chemistry hamiltonian

Molecular hamiltonian, nuclei of charge Zα positioned at R⃗α

In the proper unit system, the hamiltonian of the electrons is :

Ĥ = −∑
σ
∫ dr⃗Ψ†

σ(r⃗)
∆
2

Ψσ(r⃗) −∑
σ,α
∫ dr⃗Zα

Ψ†
σ(r⃗)Ψσ(r⃗)
∣r⃗ − R⃗α ∣

+∑
σσ′
∫ dr⃗dr⃗ ′

Ψ†
σ(r⃗)Ψσ(r⃗)Ψ†

σ′
(r⃗ ′)Ψσ′ (r⃗ ′)

∣r⃗ − r⃗ ′∣
(1)

Given a basis set of orbitals Φ = {ϕi}i=1...M and with c†
iσ = ∫ dr⃗ ϕi(r⃗)Ψ

†
σ(r⃗) :

Ĥ = ∑
ijσ

Hijc
†
iσcjσ + ∑

ijklσσ′
Vijkℓc

†
iσc

†
jσ′ckσ′cℓσ (2)

Then, the problem is characterized by :

Hij = −∫ dr⃗
ϕi(r⃗)∆ϕj(r⃗)

2
−∫ dr⃗ ∑

α

Zαϕi(r⃗)ϕj(r⃗)

∣r⃗ − R⃗α∣

Vijkℓ = ∫ dr⃗1dr⃗2
ϕi(r⃗1)ϕj(r⃗1) ⋅ ϕk(r⃗2)ϕℓ(r⃗2)

∣r⃗1 − r⃗2∣

(3)
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Units and orders of magnitude

Units: Distances are in Bohr Radius : a0 =
4πε0 h̄

2

2me
≈ 0.5Å

Energies are in Hartree 1 Ha = Eh = h̄cα/a0 = 27.2eV ≈ 30 000K

Orders of magnitude: Hij ,Vijkℓ can be as high as 10− 100Ha
Chemical accuracy : 1mHa = 300K
Biological accuracy : ≪ 10µHa = 3K ??
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Limits of gaussians

The standard resolution methods only use Gaussian-based orbitals,
defined as :

ψgaussian
(r⃗) = ∑

i

αie
− r2

ζ2
i (4)
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Figure: Exact 1s orbital of Hydrogen VS Approximation with 4 gaussians
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Precision is not accuracy

Once discretized, we need a solver :

Figure: Benzene, with cc-pvDz (30 electrons, 108 orbitals)

100 200 300
# Gaussians in basis

10 3

10 2

10 1

100

E
ne

rg
y 

E
rr

or
 [H

a]

cc-pvDz
cc-pvTz
cc-pvQz
cc-pv5z

Ô⇒ With such a basis set, precision is not accuracy
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Quantics

Discretization onto exponentially fine grid

We use Quantics to describe continuous functions in 3D :

r⃗ ∈ [−50, 50]3 Ô⇒ x1x2⋯xn y1⋯yn z1⋯zn, xi , yi , zi ∈ {0, 1}

With : r⃗ =
⎛
⎜
⎝

x
y
z

⎞
⎟
⎠
= −50+ 50 ⋅

⎛
⎜
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x1
21
+
x2
22
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yn
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⎠

(5)

Figure: The positions
are mapped to their
coordinate in this tree
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Interpolation accuracy
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Figure: The relevant functions are
interpolated accurately with
the Tensor Cross Interpolation

algorithm (TCI)
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Physical accuracy

Figure: The interpolations are
physically precise : they give

out accurate energy !
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Tensorized orbitals

Conclusion: MPSs considerably expand the set of usable functions.
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Integrals to compute

We saw that the problem is completely determined by these 4 objects :

Sij = ∫ dr⃗ φi(r⃗)φj(r⃗)

Kij = −∫ dr⃗
φi(r⃗)∆φj(r⃗)

2

Pα
ij = −∫ dr⃗

Zα φi(r⃗)φj(r⃗)

∣r⃗ − R⃗α∣

Vijkℓ = ∫ dr⃗1dr⃗2
φi(r⃗1)φj(r⃗1) ⋅ φk(r⃗2)φℓ(r⃗2)

∣r⃗1 − r⃗2∣

(6)

Ô⇒ We compute them by QTT contractions
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The simple ones

The Sij , Kij , P
α
ij are computed using standard MPS/MPO operations. For

example, Kij :

MPS-MPO-MPS contrac-
tion
Very fast compared to the other
operations, because χ∆ = 4
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The crux : first getting the product orbitals

First, we compute ϕij(r⃗) = ϕi(r⃗)ϕj(r⃗), the product orbitals.

Side view representation :

Figure: Element-wise multiplication [side view]
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and finally computing the Vijkℓ

Figure: Vijkℓ computation, as MPS-MPO-MPS contraction of product
orbitals [side view]
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Proof of concept : LiH with sto-6g basis set
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Figure: For a gaussian basis set (sto-6g), we compare the exact computations
with a chemistry package (Pyscf) and the QTT computations. 24 / 34
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Proof of concept : LiH with sto-6g basis set
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Note on ordering and discretization

Grouped ordering :
r⃗ Ô⇒ x1x2⋯xn y1⋯yn z1⋯zn

Interlaced ordering :
r⃗ Ô⇒ x1y1z1 x2y2z2 ⋯ xnynzn
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Figure: Accuracy of the
“LiH with sto-6g”

calculation as function of
rank χ

Effect of bit ordering
and grid density
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The initial insight
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The error ϵbasis set is only due to a poor quality basis set.
The error ϵcorr occurs because we are limited by the number of orbitals
to properly describe the correlations.
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Natural orbitals

1-body density matrix

Once we found the ground state, we get the 1-body density matrix γij = ⟨c
†
i cj⟩

The eigenstates are optimally occupied orbitals, the eigenvalues are the
occupation numbers.
These are the Natural Orbitals.
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Ô⇒ We can then move to the basis of natural orbitals : ψα = Λαiϕi
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The enrichment process

Figure: Enrichment algorithm, iteratively extracting from known orbitals,
the overall bests for the given problem
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Simulation results
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Figure: Methane energy with a basis set of size M = 34.
The enrichment is done over the cc-pv5z basis set (having 311 orbitals).
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Computing the gradient

Energy functionnal

Once we solved for the density matrices γij = ⟨c
†
i cj⟩ and γijkℓ = ⟨c

†
i c

†
kcjcℓ⟩, the

energy is :

E[Φ] = γij ∫ dr⃗ϕi [−∆r⃗ −
Zα

∣r⃗ − R⃗α∣
]ϕj + γijkℓ

1

2 ∫
dr⃗d r⃗ ′

ϕiϕj(r⃗)ϕkϕl(r⃗
′
)

∣r⃗ − r⃗ ′∣
(7)

Then, we can compute the gradients with respect to individual orbitals :

ξi(r⃗) = δE

δϕi
= −2∑

j

γij [∆r⃗ + Zα

∣r⃗ − R⃗α ∣
]ϕj(r⃗) + 2∑

jkℓ

[γijkℓ ∫ dr⃗ ′
ϕkϕℓ(r⃗ ′)
∣r⃗ − r⃗ ′∣ ]ϕj(r⃗) (8)

These gradients are in the space of orbitals, and can be used as such !
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Enriching with gradients

We optimize the basis set by feeding the gradients as orbitals in the
enrichment scheme :
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Outlines

Tensorized orbitals extend the set of usable functions for computational
chemistry

With tensorized orbitals, we can obtain basis sets of arbitrary size with
increased accuracy, making extrapolations easier

We can use existing basis sets or variations on exact solutions to enrich
tensorized basis sets

Using gradients of the energy with respect to orbitals improves basis
sets in an agnostic manner

Thanks a lot for your attention.
Now it’s time for any questions you might have !

34 / 34


	Physical and chemical background
	The quantum chemistry problem
	Mathematical formulation
	Standard resolution pitfalls

	Representing orbitals as Quantics Tensor Trains
	Definitions
	Accuracy

	Computing the matrix elements
	Integrals to compute
	The simple ones
	The crux : Vijk
	Proof of concept

	Algorithms to optimize tensorized orbitals
	The initial insight
	Enriching the molecular orbitals
	Gradient of the energy as orbital candidate


