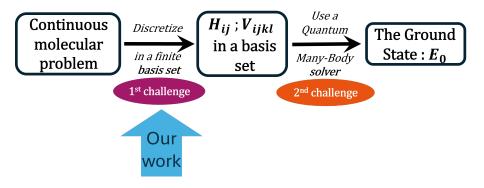
Tensorized orbitals for computational chemistry

Workshop on tensor networks - October 9th, 2025 - Grenoble

- N. Jolly, Y.N. Fernández, X. Waintal, Tensorized orbitals for computational chemistry, Phys. Rev. B. 111 (2025) 245115.
- Additional works (yet non-published)

General overview



Our goal

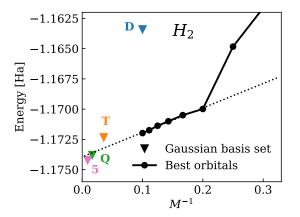


Figure: H_2 energy for different basis sets. The **best orbitals** get the accuracy of the T at the price of the D

Table of Contents

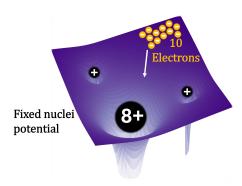
- Physical and chemical background
 - The quantum chemistry problem
 - Mathematical formulation
 - Standard resolution pitfalls
- Representing orbitals as Quantics Tensor Trains
 - Definitions
 - Accuracy
- Computing the matrix elements
 - Integrals to compute
 - The simple ones
 - The crux : $V_{iik\ell}$
 - Proof of concept
- 4 Algorithms to optimize tensorized orbitals
 - The initial insight
 - Enriching the molecular orbitals
 - Gradient of the energy as orbital candidate

Table of Contents

- Physical and chemical background
 - The quantum chemistry problem
 - Mathematical formulation
 - Standard resolution pitfalls
- Representing orbitals as Quantics Tensor Trains
 - Definitions
 - Accuracy
- Computing the matrix elements
 - Integrals to compute
 - The simple ones
 - The crux : V_{iikl}
 - Proof of concept
- Algorithms to optimize tensorized orbitals
 - The initial insight
 - Enriching the molecular orbitals
 - Gradient of the energy as orbital candidate

The quantum chemistry problem

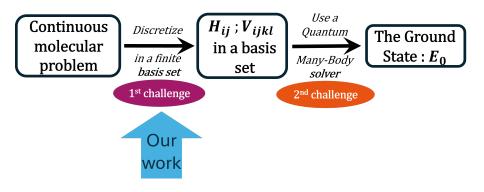
Example : H_2O molecule



Input: Fixed nuclei positions

Output: Ground state energy

General overview



The quantum chemistry hamiltonian

Molecular hamiltonian, nuclei of charge Z_{α} positioned at \vec{R}_{α}

In the proper unit system, the hamiltonian of the electrons is :

$$\hat{\mathcal{H}} = -\sum_{\sigma} \int d\vec{r} \Psi_{\sigma}^{\dagger}(\vec{r}) \frac{\Delta}{2} \Psi_{\sigma}(\vec{r}) - \sum_{\sigma,\alpha} \int d\vec{r} Z_{\alpha} \frac{\Psi_{\sigma}^{\dagger}(\vec{r}) \Psi_{\sigma}(\vec{r})}{|\vec{r} - \vec{R}_{\alpha}|} + \sum_{\sigma\sigma'} \int d\vec{r} d\vec{r}' \frac{\Psi_{\sigma}^{\dagger}(\vec{r}) \Psi_{\sigma}(\vec{r}) \Psi_{\sigma'}(\vec{r}') \Psi_{\sigma'}(\vec{r}')}{|\vec{r} - \vec{r}'|}$$
(1)

Given a basis set of orbitals $\Phi = \{\phi_i\}_{i=1...M}$ and with $c_{i\sigma}^{\dagger} = \int d\vec{r} \ \phi_i(\vec{r}) \Psi_{\sigma}^{\dagger}(\vec{r})$:

$$\hat{\mathcal{H}} = \sum_{ij\sigma} H_{ij} c^{\dagger}_{i\sigma} c_{j\sigma} + \sum_{ijkl\sigma\sigma'} V_{ijk\ell} c^{\dagger}_{i\sigma} c^{\dagger}_{j\sigma'} c_{k\sigma'} c_{\ell\sigma}$$
 (2)

Then, the problem is characterized by :

$$H_{ij} = -\int d\vec{r} \, \frac{\phi_{i}(\vec{r})\Delta\phi_{j}(\vec{r})}{2} - \int d\vec{r} \, \sum_{\alpha} \frac{Z_{\alpha}\phi_{i}(\vec{r})\phi_{j}(\vec{r})}{|\vec{r} - \vec{R}_{\alpha}|}$$

$$V_{ijk\ell} = \int d\vec{r}_{1}d\vec{r}_{2} \, \frac{\phi_{i}(\vec{r}_{1})\phi_{j}(\vec{r}_{1}) \cdot \phi_{k}(\vec{r}_{2})\phi_{\ell}(\vec{r}_{2})}{|\vec{r}_{1} - \vec{r}_{2}|}$$
(3)

Units and orders of magnitude

Units: Distances are in Bohr Radius :
$$a_0 = \frac{4\pi\epsilon_0 \, \hbar^2}{2m_e} \approx 0.5 \, \mathring{A}$$

Energies are in Hartree 1 Ha = $E_h = \hbar c\alpha/a_0 = 27.2 \, \text{eV} \approx 30~000 \, \text{K}$

Orders of magnitude: H_{ij} , $V_{ijk\ell}$ can be as high as 10-100Ha

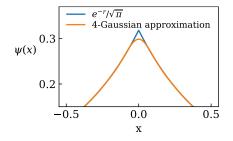
Chemical accuracy : 1 mHa = 300 K

Biological accuracy : $\ll 10\mu Ha = 3K$??

Limits of gaussians

The standard resolution methods only use **Gaussian-based** orbitals, defined as :

$$\psi^{\text{gaussian}}(\vec{r}) = \sum_{i} \alpha_{i} e^{-\frac{r^{2}}{\zeta_{i}^{2}}}$$
 (4)



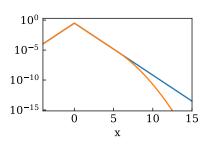


Figure: Exact 1s orbital of Hydrogen VS Approximation with 4 gaussians

Precision is not accuracy

Once discretized, we need a solver:

Figure: Benzene, with cc-pvDz (30 electrons, 108 orbitals)

Precision is not accuracy

Once discretized, we need a solver:

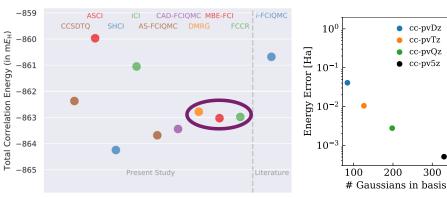


Figure: Benzene, with cc-pvDz (30 electrons, 108 orbitals)

⇒ With such a basis set, **precision** is not **accuracy**

The quantum chemistry problem Mathematical formulation Standard resolution pitfalls

General overview

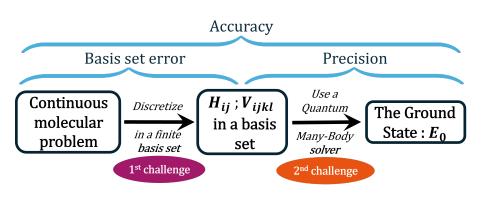


Table of Contents

- Physical and chemical background
 - The quantum chemistry problem
 - Mathematical formulation
 - Standard resolution pitfalls
- Representing orbitals as Quantics Tensor Trains
 - Definitions
 - Accuracy
- Computing the matrix elements
 - Integrals to compute
 - The simple ones
 - The crux : V_{iikl}
 - Proof of concept
 - Algorithms to optimize tensorized orbit
 - The initial insight
 - Enriching the molecular orbitals
 - Gradient of the energy as orbital candidate

Quantics

Discretization onto exponentially fine grid

We use Quantics to describe continuous functions in 3D:

$$\vec{r} \in [-50, 50]^3 \implies x_1 x_2 \cdots x_n \ y_1 \cdots y_n \ z_1 \cdots z_n, \quad x_i, y_i, z_i \in \{0, 1\}$$

With:
$$\vec{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = -50 + 50 \cdot \begin{pmatrix} \frac{x_1}{2^1} + \frac{x_2}{2^2} + \dots + \frac{x_n}{2^n} \\ \frac{y_1}{2^1} + \frac{y_2}{2^2} + \dots + \frac{y_n}{2^n} \\ \frac{z_1}{2^1} + \frac{z_2}{2^2} + \dots + \frac{z_n}{2^n} \end{pmatrix}$$

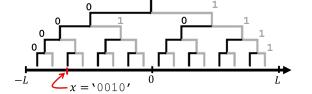


Figure: The positions are mapped to their coordinate in this tree

Interpolation accuracy

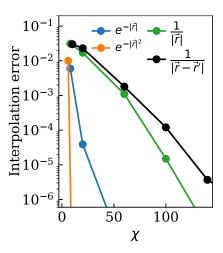
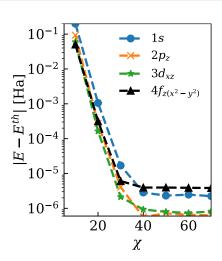


Figure: The relevant functions are interpolated accurately with the Tensor Cross Interpolation algorithm (TCI)

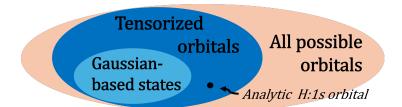
Physical accuracy

Figure: The interpolations are **physically precise**: they give out accurate energy!



Tensorized orbitals

Conclusion: MPSs considerably expand the set of usable functions.



General overview

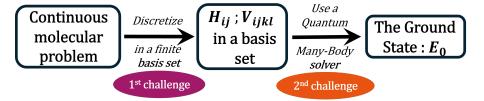


Table of Contents

- 1 Physical and chemical background
 - The quantum chemistry problem
 - Mathematical formulation
 - Standard resolution pitfalls
- 2 Representing orbitals as Quantics Tensor Trains
 - Definitions
 - Accuracy
- Computing the matrix elements
 - Integrals to compute
 - The simple ones
 - The crux : $V_{iik\ell}$
 - Proof of concept
- 4 Algorithms to optimize tensorized orbitals
 - The initial insight
 - Enriching the molecular orbitals
 - Gradient of the energy as orbital candidate

Integrals to compute

We saw that the problem is completely determined by these 4 objects :

$$S_{ij} = \int d\vec{r} \ \varphi_{i}(\vec{r})\varphi_{j}(\vec{r})$$

$$K_{ij} = -\int d\vec{r} \ \frac{\varphi_{i}(\vec{r})\Delta\varphi_{j}(\vec{r})}{2}$$

$$P_{ij}^{\alpha} = -\int d\vec{r} \frac{Z_{\alpha}\varphi_{i}(\vec{r})\varphi_{j}(\vec{r})}{|\vec{r} - \vec{R}_{\alpha}|}$$

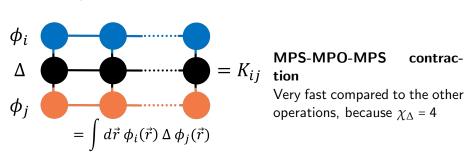
$$V_{ijk\ell} = \int d\vec{r}_{1}d\vec{r}_{2} \ \frac{\varphi_{i}(\vec{r}_{1})\varphi_{j}(\vec{r}_{1}) \cdot \varphi_{k}(\vec{r}_{2})\varphi_{\ell}(\vec{r}_{2})}{|\vec{r}_{1} - \vec{r}_{2}|}$$

$$(6)$$

⇒ We compute them by QTT contractions

The simple ones

The S_{ij} , K_{ij} , P_{ij}^{α} are computed using standard MPS/MPO operations. For example, K_{ij} :



The crux: first getting the product orbitals

First, we compute $\phi_{ij}(\vec{r}) = \phi_i(\vec{r})\phi_i(\vec{r})$, the product orbitals.

Side view representation:

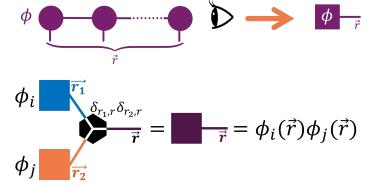


Figure: Element-wise multiplication [side view]

and finally computing the $V_{ijk\ell}$

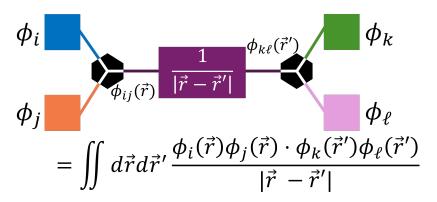


Figure: $V_{ijk\ell}$ computation, as MPS-MPO-MPS contraction of product orbitals [side view]

Proof of concept: LiH with sto-6g basis set

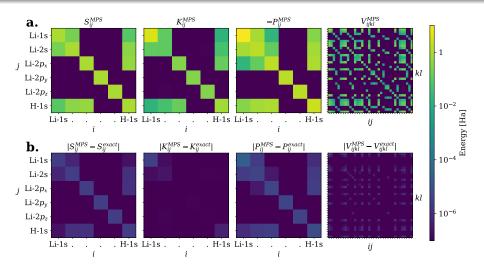


Figure: For a gaussian basis set (sto-6g), we compare the exact computations with a chemistry package (Pyscf) and the QTT computations.

Proof of concept: LiH with sto-6g basis set

Note on ordering and discretization

Grouped ordering :
$$\vec{r} \Longrightarrow x_1 x_2 \cdots x_n \ y_1 \cdots y_n \ z_1 \cdots z_n$$

Interlaced ordering:

$$\vec{r} \Longrightarrow x_1 y_1 z_1 \ x_2 y_2 z_2 \cdots x_n y_n z_n$$

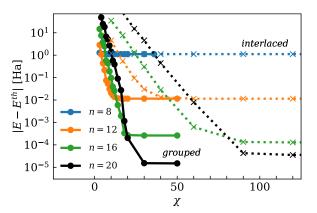


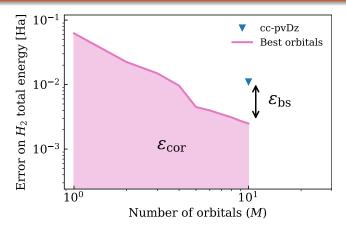
Figure: Accuracy of the "LiH with sto-6g" calculation as function of rank χ Effect of **bit ordering** and grid density

The initial insight
Enriching the molecular orbitals
Gradient of the energy as orbital candidate

Table of Contents

- 1 Physical and chemical background
 - The quantum chemistry problem
 - Mathematical formulation
 - Standard resolution pitfalls
- Representing orbitals as Quantics Tensor Trains
 - Definitions
 - Accuracy
- Computing the matrix elements
 - Integrals to compute
 - The simple ones
 - The crux : V_{iikl}
 - Proof of concept
- 4 Algorithms to optimize tensorized orbitals
 - The initial insight
 - Enriching the molecular orbitals
 - Gradient of the energy as orbital candidate

The initial insight



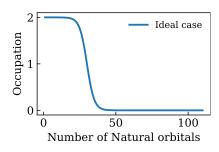
The error $\epsilon_{\text{basis set}}$ is only due to a **poor quality basis set**. The error ϵ_{corr} occurs because we are **limited by the number of orbitals** to properly describe the correlations.

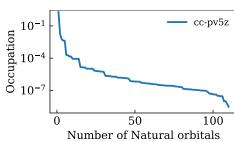
Natural orbitals

1-body density matrix

Once we found the ground state, we get the 1-body density matrix $\gamma_{ij} = \left(c_i^{\dagger} c_j\right)$ The eigenstates are **optimally occupied orbitals**, the eigenvalues are the occupation numbers.

These are the Natural Orbitals.





 \Longrightarrow We can then move to the basis of natural orbitals : $\psi_{\alpha} = \Lambda_{\alpha i} \phi_i$

The enrichment process

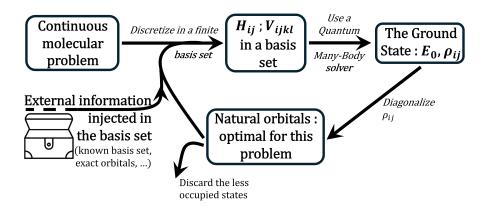


Figure: **Enrichment algorithm**, iteratively extracting from known orbitals, the overall bests for the given problem

Simulation results

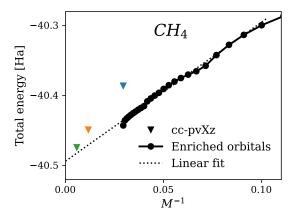


Figure: Methane energy with a basis set of size M = 34. The enrichment is done over the cc-pv5z basis set (having 311 orbitals).

Computing the gradient

Energy functionnal

Once we solved for the density matrices $\gamma_{ij} = \left(c_i^{\dagger} c_j\right)$ and $\gamma_{ijk\ell} = \left(c_i^{\dagger} c_k^{\dagger} c_j c_{\ell}\right)$, the **energy** is :

$$E[\Phi] = \gamma_{ij} \int d\vec{r} \phi_i \left[-\Delta_{\vec{r}} - \frac{Z_{\alpha}}{|\vec{r} - \vec{R}_{\alpha}|} \right] \phi_j + \gamma_{ijk\ell} \frac{1}{2} \int d\vec{r} d\vec{r}' \frac{\phi_i \phi_j(\vec{r}) \phi_k \phi_l(\vec{r}')}{|\vec{r} - \vec{r}'|}$$
(7)

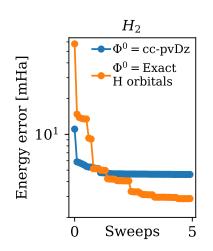
Then, we can compute the **gradients** with respect to individual orbitals :

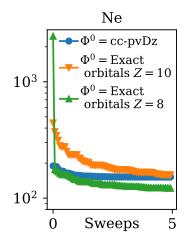
$$\xi_{i}(\vec{r}) = \frac{\delta E}{\delta \phi_{i}} = -2 \sum_{j} \gamma_{ij} \left[\Delta_{\vec{r}} + \frac{Z_{\alpha}}{|\vec{r} - \vec{R}_{\alpha}|} \right] \phi_{j}(\vec{r}) + 2 \sum_{jk\ell} \left[\gamma_{ijk\ell} \int d\vec{r}' \frac{\phi_{k} \phi_{\ell}(\vec{r}')}{|\vec{r} - \vec{r}'|} \right] \phi_{j}(\vec{r})$$
(8)

These gradients are in the space of orbitals, and can be used as such!

Enriching with gradients

We optimize the basis set by **feeding the gradients as orbitals** in the enrichment scheme :





Outlines

- Tensorized orbitals extend the set of usable functions for computational chemistry
- With tensorized orbitals, we can obtain basis sets of arbitrary size with increased accuracy, making extrapolations easier
- We can use existing basis sets or variations on exact solutions to enrich tensorized basis sets
- Using gradients of the energy with respect to orbitals improves basis sets in an agnostic manner

Thanks a lot for your attention. Now it's time for any questions you might have!