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Physical and chemical background The quantum chemistry problem

Mathematical formulation
Standard resolution pitfalls

The quantum chemistry problem

Example : H,O molecule

Input : Fixed nuclei positions

Fixed nuclei

Output : Ground state energy
potential -
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Physical and chemical background The quantum chemistry problem

Mathematical formulation
Standard resolution pitfalls

The quantum chemistry hamiltonian

Molecular hamiltonian, nuclei of charge Z, positioned at R,

In the proper unit system, the hamiltonian of the electrons is :

7-1=—Zfdr‘f N3 Ly, (7) - Zfd”Z "(r)T"(’) Zfd'd"

oo’

Y)Y (DY, (7) ¥or ()

|F = 7|

Given a basis set of orbitals @ = {¢;};-1..p and with c = [ dF ¢; r)‘I’U(r)

zH’JCItTCJ‘7+ Z V’Jkécl]:f JTU’CkU'CfU (2)

ijo ijkloa’

4

Then, the problem is characterized by :
ﬂcpl r)A(PJ r) Z(PI r)(PJ )
/d [ ; |7 — Ry
Uké_fdf dr (P(r1)¢f(r1) Pr(72)pe(72)

GRe]
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Physical and chemical background The quantum chemistry problem

Mathematical formulation
Standard resolution pitfalls

Units and orders of magnitude

47reg > .
-2 L 0.5A
2me

Energies are in Hartree 1 Ha = Ej, = hca/ag = 27.2eV ~ 30 000K

Units: Distances are in Bohr Radius : ag

Orders of magnitude: Hj;, Vjjy can be as high as 10 -~ 100Ha
Chemical accuracy : 1mHa = 300K
Biological accuracy : <« 10pHa =3K 77
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Physical and chemical background The quantum chemistry problem

Mathematical formulation
Standard resolution pitfalls

Limits of gaussians

The standard resolution methods only use Gaussian-based orbitals,

defined as :
2

¢gaussian(,—;) — Z“"e_é? (4)
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Figure: Exact 1s orbital of Hydrogen VS Approximation with 4 gaussians
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Physical and chemical background The quantum chemistry problem

Mathematical formulation
Standard resolution pitfalls

Precision is not accuracy

Once discretized, we need a solver :

-859 ASCI [ CAD-FCIQMC MBE-FCI i-FCIQMC
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Figure: Benzene, with cc-pvDz (30 electrons, 108 orbitals)
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Physical and chemical background The quantum chemistry problem

Mathematical formulation
Standard resolution pitfalls

Precision is not accuracy

Once discretized, we need a solver :
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Figure: Benzene, with cc-pvDz (30 electrons, 108 orbitals)

== With such a basis set, precision is not accuracy
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Representing orbitals as Quantics Tensor Trains Definitions
Accuracy

Quantics

Discretization onto exponentially fine grid

We use Quantics to describe continuous functions in 3D :

r e [-50, 50]3 = X1X2Xp Y1'"'¥n Z1°Zn, X, Y¥i» Zi €{0,1}

Xl X2 Xn

21 2T o

yi Y2 Yn (5)

ISt

X
With : 7= |y |=-50+50-| 73+ 23 o
V4

72z z
A2, 40
21 ~ 972 on

Figure: The positions
are mapped to their
r |J— r r,_ r coordinate in this tree

x ='0010"

v
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Representing orbitals as Quantics Tensor Trains

Interpolation accuracy

Interpolation error

o e N o L
|7

Definitions
Accuracy

Figure: The relevant functions are
interpolated accurately with
the Tensor Cross Interpolation

algorithm (TCI)
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Representing orbitals as Quantics Tensor Trains Definitions
Accuracy

Physical accuracy

Figure: The interpolations are
physically precise : they give
out accurate energy !

|E — E™| [Ha]
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Representing orbitals as Quantics Tensor Trains Definitions
Accuracy

Tensorized orbitals

Conclusion: MPSs considerably expand the set of usable functions.

All possible
orbitals

Analytic H:1s orbital
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Representing orbitals as Quantics Tensor Trains Definitions
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Integrals to compute
The simple ones

Computing the matrix elements The crux : V/‘jk/c
Proof of concept

Integrals to compute

We saw that the problem is completely determined by these 4 objects :

5U=fdf 9i(M);(F)
-—deM
/da Zupi(F)@;(r) (6)
|r—R |
Uke:/dﬁdfg 0i(1)9;(1) - ¢ (72) e (72)

|fL = 7o

= We compute them by QTT contractions
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Integrals to compute
The simple ones

Computing the matrix elements The crux : V/‘jk/c
Proof of concept

The simple ones

The Sjj, Kjj, Pj; are computed using standard MPS/MPO operations. For
example, Kj; :

¢i ........

MPS-MPO-MPS contrac-

A B—E— = Kij tion
Very fast compared to the other
¢j """" operations, because xp =4
= [ @i i) 8.5

21/34



Integrals to compute
The simple ones
Computing the matrix elements The crux : Vijk[
Proof of concept

The crux : first getting the product orbitals

First, we compute ¢;i(7) = ¢;i(7)¢;(7), the product orbitals.

Side view representation :

” — === 0:®¢;®
¢J

Figure: Element-wise multiplication [side view]
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Integrals to compute
The simple ones
Computing the matrix elements The crux : Vijk[
Proof of concept

and finally computing the Vj;,

7 =7

Figure: Vi computation, as MPS-MPO-MPS contraction of product
orbitals [side view]
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Integrals to compute
The simple ones
Computing the matrix elements The crux : V/‘jké
Proof of concept

Proof of concept : LiH with sto-6g basis set

-
=
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Figure: For a gaussian basis set (sto-6g), we compare the exact computations

with a chemistry package (Pyscf) and the QTT computations. 24)34



Integrals to compute
The simple ones
Computing the matrix elements The crux : V/‘jk/c
Proof of concept

Proof of concept : LiH with sto-6g basis set

- Tensorize all, - Usea
Continuous choose any basis set H ij » Vijkl Quantum The Ground
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and keep easy
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Integrals to compute
The simple ones
Computing the matrix elements The crux : V/‘jk/c
Proof of concept

Note on ordering and discretization

Grouped ordering : Interlaced ordering :
r = X1X2:*Xn Y1°=*Yn Z1°*Zn r = X1Y1Z1 X2Y22Z2 *** XnYnZn
101 L
interlaced
100 L e mmmmnn 1 )
i Figure: Accuracy of the
Z107f “LiH with sto-6g"
5;10-2 i ewmnnnns %| calculation as function of
PP Ea rank x
ml0™r Effect of bit ordering
1074 | g ARG > and grid density
LR
1075 | ==
0 50 100
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The initial insight
Enriching the molecular orbitals

. L C X ) Gradient of the energy as orbital candidate
Algorithms to optimize tensorized orbitals

The initial insight

— -1F
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'; Best orbitals
o
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Number of orbitals (M)

The error €pasis set is only due to a poor quality basis set.
The error €corr 0ccurs because we are limited by the number of orbitals

to properly describe the correlations.
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The initial insight
Enriching the molecular orbitals
Gradient of the energy as orbital candidate

Algorithms to optimize tensorized orbitals

Natural orbitals

1-body density matrix

Once we found the ground state, we get the 1-body density matrix 7;; = (C’TCJ')
The eigenstates are optimally occupied orbitals, the eigenvalues are the
occupation numbers.

These are the Natural Orbitals.

—— Ideal case 10-1} == CC-pv5Zz

Occupation
=
Occupation
=
(e)
&

0 50 100 0 50 100
Number of Natural orbitals Number of Natural orbitals

== We can then move to the basis of natural orbitals : 1, = Asi¢p;
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The initial insight

Enriching the molecular orbitals
. L C X ) Gradient of the energy as orbital candidate
Algorithms to optimize tensorized orbitals

The enrichment process
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N A(known basis set, problem
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Figure: Enrichment algorithm, iteratively extracting from known orbitals,
the overall bests for the given problem
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T
E

Algorithms to optimize tensorized orbitals

Simulation results

he initial insight
nriching the molecular orbitals

Gradient of the energy as orbital candidate

-40.3 4
<
T
>
o))
T —40.4
<]
[¢b]
I
2 v ¥  cc-pvXz
= v —e— FEnriched orbitals
—a054" e Linear fit
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Figure: Methane energy with a basis set of size M = 34.

The enrichment is done over the cc-pv5z basis set (having 311 orbitals).
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The initial insight
Enriching the molecular orbitals

. L C X ) Gradient of the energy as orbital candidate
Algorithms to optimize tensorized orbitals

Computing the gradient

Energy functionnal

Once we solved for the density matrices 7y;; = (cl]tcj> and Yjjke = (c;fc;icjcz), the

i 4’J(r)4’k¢’l(r)
1= | aro[-a0- 2 vy [ arar PEDERED

energy is :

Then, we can compute the gradients with respect to individual orbitals :

(7 )-577— ;w[ |]¢J P)+2 [wfd""’f?f(fq)]zp,-(f)

These gradients are in the space of orbitals, and can be used as such !

(7)

(®)
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Algorithms to optimize tensorized orbitals

Enriching with gradients

The initial insight

Enriching the molecular orbitals
Gradient of the energy as orbital candidate

We optimize the basis set by feeding the gradients as orbitals in the
enrichment scheme :

Energy error [mHa]

H,

101':

—-8-d0 = cc-pvDz

@Y = Exact
“®"H orbitals

Ne

103':

102 4

—-8- 0 = cc-pvDz

@Y = Exact
¥ orbitals Z=10

@Y = Exact
—A= orbitals Z=8




The initial insight
Enriching the molecular orbitals
Gradient of the energy as orbital candidate

Algorithms to optimize tensorized orbitals

Outlines

@ Tensorized orbitals extend the set of usable functions for computational
chemistry

@ With tensorized orbitals, we can obtain basis sets of arbitrary size with
increased accuracy, making extrapolations easier

@ We can use existing basis sets or variations on exact solutions to enrich
tensorized basis sets

@ Using gradients of the energy with respect to orbitals improves basis
sets in an agnostic manner

Thanks a lot for your attention.
Now it's time for any questions you might have !
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