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The two-dimensional materials world
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The flexibility of two-dimensional materials

They can be stacked They can be rotated 

These are unique features of two-dimensional materials

Nature 499, 419–425 (2013) Science 361, 6403, 690-693 (2018)



  

Twisted graphene bilayers

Structure Reciprocal space

Phys. Rev. Lett. 99, 256802 (2007)
Phys. Rev. B 82, 121407(R) (2010)
PNAS 108 (30) 12233-12237 (2011)



  

Electronic structure of twisted 
bilayer

Uncoupled layers

Twisted graphene bilayers feature flat bands driven by the twist
Phys. Rev. Lett. 99, 256802 (2007)
Phys. Rev. B 82, 121407(R) (2010)
PNAS 108 (30) 12233-12237 (2011)

Coupled layers



  

Electronic structure of twisted 
bilayer

Local density of states Coupled layers

Phys. Rev. Lett. 99, 256802 (2007)
Phys. Rev. B 82, 121407(R) (2010)
PNAS 108 (30) 12233-12237 (2011)



  

Electronic structure of twisted 
bilayer

Local density of states Experimental local density of states

Nature Physics 6, 109–113 (2010)
Nature 572, 101–105 (2019)
Nature 572, 95–100 (2019)



  

The tunability of twisted van der Waals 
materials

Nature 556, 43–50 (2018)

Superconductivity
Twisted bilayer graphene

Topological networks

Correlated insulators Quasicrystalline physics

Science 361, 782-786 (2018)

Twisted multilayers provide a powerful platform for emergent phenomena

Nature 556, 80–84 (2018)

Nano Lett. 18, 11,
6725-6730 (2018)

Chern insulators

Science 365, 605-608 (2019)

Proximal fractional
Chern insulators

Nature 600, 439–443 (2021)



  

Experimental observation of multiple 
scales in twisted bilayers

Moire and atomic scale with STM Atomic-scale symmetry breaking with STM

Nature 620, 525–532 (2023)



  

Artificial quantum matter in moire
van der Waals heterostructures

Unconventional
magnets

Unconventional
superconductors

Heavy-fermion
quantum materials

Fractional
topological matter

Twisted MoTe2

Nature 622, 
63–68 (2023)

1H-1T TaS2
Twisted trilayer

graphene
Twisted CrBr3

Nature 599,
582–586 (2021)

Science, 374(6571),
1140-1144 (2021)

Nature 595,
526–531 (2021)



  

Super-moire materials

Moire-of-moire materials

Requires computing up to a billion sites (       )
Physics at several length scales (atomic, moire, and super-moire)
Experiments showing correlations and unconventional superconductivity 

How can we compute the electronic structure of exceptionally large systems?

Nature 620, 762–767 (2023)
Nature 625, 494–499 (2024)
Nature 641, 896–903 (2025)



  

Super-moire materials, 
experimentally

Coexisting correlations
and superconductivity

Moire quasicrystal in twisted trilayer graphene

Nature 620, 762–767 (2023)



  

Why super-moire materials are hard 
(for theorists)

Moire systems N=105 sites, calculations taking around 1 minute
Computational cost grows as N (best case) or N3 (worst case)
Super-moire N=109 sites, calculations taking 10 days – 1000000 years

Is there a way to solve exceptionally large electronic structure problems?

(even going beyond usual memory limitations of conventional methods)



  

Behind the scenes

Adolfo FumegaTiago AntãoYitao Sun

Correlated states in super-moiré materials with a kernel polynomial quantics tensor cross interpolation 
algorithm, AO Fumega, M Niedermeier, JL Lado, 2D Materials 12 (1), 015018 (2025)

Self-consistent tensor network method for correlated super-moire matter beyond one billion sites, Y 
Sun, M Niedermeier, TVC Antão, AO Fumega, JL Lado, arXiv:2503.04373 (2025)

Tensor network method for real-space topology in quasicrystal Chern mosaics, TVC Antão, Y Sun, AO 
Fumega, JL Lado,  arXiv:2506.05230 (2025) 

Marcel Niedermeier



  

Tensor networks for interacting 
super-moire materials



  

Modeling electrons in a material

Define operators that can create or destroy particles

Annihilation operator, destroys a particle in site i

Creation operator, creates a particle in site i

The empty vacuum state           is defined as 

The Hamiltonian is written in terms of creation and annihilation operators



  

Modes in a single particle 
Hamiltonian

To solve a single particle Hamiltonian, we just have to diagonalize the matrix

If take a certain finite geometry, we can find the confined modes 

Let us do it for graphene islands



  

Confined modes in graphene 
islands



  

Confined modes in graphene 
islands



  

The challenge of correlated
super-moire materials

Hamiltonian describing electrons in a super-moire material

Mean-field treatment of the interacting Hamiltonian

Solving the system requires dealing with matrices proportional to the system size

How could we solve a system whose Hamiltonian would be too large to store?

In a super-moire system, this requires solving a billion sites

(even before considering the time required to solve it)



  

Tensor network for single particle 
tight binding problems

We can identify a many-body space with a very large single particle one

Many-body basis

Single particle basis

We can use tensor networks to solve very large tight binding problem 

2D Materials 12 (1), 015018 (2025)                     arXiv:2503.04373 (2025)                  arXiv:2506.05230 (2025)



  

Dealing with very large spaces with 
tensor networks

A many-body wavefunction a is a very high dimensional object  (       coefficients)

Tensor-networks allow “compressing” exponentially large information with linear resources

“True wavefunction” “Tensor-network wavefunction”



  

Dealing with very large spaces with 
tensor networks

Typical many-body wavefunction

We need to determine in total coefficients

Is there an efficient way of storing so many coefficients?

Tensor networks allow parametrizing many-body wavefunctions as

Tensor networks allow to drastically reduce the memory required to store a many-body state

Matrix product state

Annals of Physics 326, 96 (2011)

parameters

Full wavefunction



  

Exponentially large algebra with 
tensor networks

Tensor network allow to (approximately) operate in exponentially large vector spaces

vector matrix



  

Learning the tensor network 
representation

We need to represent all the tight binding terms as tensor networks

- In some cases, we can build the initial tensor network explicitly

- In other cases, we learn the tensor network with quantics tensor cross interpolation

Phys. Rev. Lett. 132, 056501 (2024)                   SciPost Phys. 18, 104 (2025)



  

Self-consistent electronic 
interactions with tensor networks

Super-moire interacting Hamiltonian

Mean-field decoupled Hamiltonian

Tensor network representation of the correlators



  

Self-consistent electronic 
interactions with tensor networks

We represent the super-moire electronic Hamiltonian as a tensor-network

The mean-field problem can be reformulated purely with tensor networks 

arXiv:2503.04373 (2025)



  

Spectral functions with the kernel 
polynomial method

KPM can be implemented with tensor networks by using tensor network algebra

Phys. Rev. B 83, 195115 (2011)
Phys. Rev. Research 1, 033009 (2019)

Rev. Mod. Phys. 78, 275 (2006)

Let us expand a delta function in Chebyshev polymials

Chebyshev relation Expansion coefficients for delta function



  

Spectral functions with tensor 
networks

Local spectral function of the mean-field Hamiltonian

Rev. Mod. Phys. 78, 275 (2006)

With a tensor network Chebyshev algorithm

arXiv:2503.04373 (2025)



  

Tensor network representation of a 
super-moire Hamiltonian

In the tight binding basis uniform hopping takes the form

In the tensor-network pseudospin basis, uniform hopping takes the form

We can identify a many-body space with a very large single particle one

Many-body basis

Single particle basis



  

Tensor network representation of a 
super-moire Hamiltonian

The tensor-network moire hopping can be built as 

We can identify a many-body space with a very large single particle one

Many-body basis

Single particle basis

Find the MPS representation fo the modulation and store in a diagonal MPO 

Quantics tensor
cross interpolation

Modulated super-moire by constraction



  

Solving billion-size
super-moire materials

Without interactions With interactions

Tensor networks allow to solve selfconsistently a super-moire with one billion sites
arXiv:2503.04373 (2025)



  

Solving billion-size
super-moire materials

With interactions (large scale)With interactions (short scale)

arXiv:2503.04373 (2025)

Tensor networks allow to solve selfconsistently a super-moire with one billion sites



  

Two-dimensional billion size 
interacting super-moire

Modulation fo the Hamiltonian

arXiv:2503.04373 (2025)



  

Two-dimensional billion size 
interacting super-moire

Selfconsistent symmetry broken order (magnetization)

arXiv:2503.04373 (2025)



  

Two-dimensional billion size 
interacting super-moire

Modulation fo the Hamiltonian

arXiv:2503.04373 (2025)



  

Two-dimensional billion size 
interacting super-moire

Selfconsistent symmetry broken order (magnetization)

arXiv:2503.04373 (2025)



  

Tensor networks for topological 
super-moire materials



  

Topological quantum matter

Quantum Spin Hall effect

Quantum Anomalous Hall effect

Science 325.5937 (2009): 178-181

Bi
2
Se

3

Science 340.6129 (2013): 167-170

Cr-doped
(Bi,Sb)

2
Te

3

Topological superconductor

Science 346.6209 (2014): 602-607

Fe@Pb

Quantum Hall effect

graphene

Nature 438, 197-200 (2005)

Weyl semimetal

    Nature Physics 11, 724–727 (2015)

TaAs

All these states are described by effective isolated single-particle physics

Nodal line semimetals

Advanced Science 6.4 (2019): 1800897

Mg
3
Bi

2



  

The Hall effect

Hall conductivity

Measure the current perpendicular to a voltage



  

The Hall conductivity

Berry curvature

Chern number

Berry connection

The Hall conductivity is obtained as

The transverse conductivity is a topological invariant

This means, it must take integer values regardless of defects in an insulator



  

Topological invariant
in a Hamiltonian

We can classify Hamiltonians according to topological invariants

Hamiltonian Wavefunction

Metric
(Berry curvature)

Topological invariant
(Chern number)



  

The role of a topological invariant
Hamiltonians with different topological invariants

can not be deformed one to another



  

The consequence of different 
topological invariants

Trivial system Topological systemTopologically
protected
excitation

Topological excitations appear between topologically different systems



  

Real space topological invariants

Real-space Chern number

Phys. Rev. B 84, 241106® (2011) 

Topological invariants are often defined in reciprocal space

Is it possible to define them in real space?



  

Kernel polynomial for topological 
invariants in real-space

With a kernel polynomial tensor network algorithm

The density matrix of a super-moire system can be expressed as a tensor network

 arXiv:2506.05230 (2025) Phys. Rev. B 84, 241106® (2011) 



  

Computing Chern numbers with 
tensor networks

Density matrix as tensor network

Topological marker as tensor network

Chern number from tensor network contraction

 arXiv:2506.05230 (2025)



  

Tensor network topological marker

Real-space Chern number (Chern marker)

Tensor-network Chern marker

 arXiv:2506.05230 (2025)



  

Topological domain with tensor 
networks

Chern number
Topological marker

In a spatially modulated
topological Hamiltonian

 arXiv:2506.05230 (2025)



  

Chern mosaic in a 8-fold
topological quasicrystal

Domains with different topological invariants can be directly computed in real space

 arXiv:2506.05230 (2025)



  

Topological modes in a 8-fold
topological quasicrystal

Topological modes appear between topological domains in real space

 arXiv:2506.05230 (2025)



  

Zero modes across topological 
quasicrystalline domain

The real space distribution of topological states can be mapped in real space



  

Chern mosaic and topological 
modes in a quasicrystal

Chern number
0 max

Tensor networks allow computing topology in exceptionally large super-moire systems

Topological modes arXiv:2506.05230 (2025)



  

Summary

Tensor networks allows solving large electronic structure problems, 
reaching the regime required for super-moire materials

2D Materials 12 (1), 015018 (2025)
arXiv:2503.04373 (2025) 
arXiv:2506.05230 (2025)
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