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Quantum spin system

Standard example: Ising model in a transverse field

i ∂tψ = Hψ with H = −Ω
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with Ω > 0 and Pauli matrices σ(k)
j acting on the kth particle

Approximate ψ(t) ∈ C2 ⊗ · · · ⊗ C2 ' C2d by a
time-dependent tree tensor network (TTN),
possibly with adaptively chosen bond dimensions.



Different trees

tree of minimal height (balanced tree) vs.
tree of maximal height → matrix product states

d = 16



Maximal bond dimensions vs. time

Ceruti, L., Sulz 2023, SIAM J. Numer. Anal.

cf. Sulz, L., Ceruti, Lesanovsky, Carollo 2024, Phys. Rev. A

for a long-range dissipative Ising model



Number of independent parameters vs. time

I Ising model has only nearest-neighbour interactions, which are well
represented by a matrix product state (MPS).

I However, MPSs appear to struggle with capturing long-range effects
for this model, as compared with TTNs on balanced trees.
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Dynamical low-rank approximation: setting

Low-rank approximation of a matrix widely used for
data compression and model reduction

Approximate the unknown solution A(t) ∈ Cm×n of a matrix ODE

Ȧ = F (A)

by low-rank matrices: use SVD-like decomposition

A(t) ≈ Y (t) = U(t)S(t)V (t)∗,

where U(t) ∈ Cm×r , V (t) ∈ Cn×r have orthonormal columns,
S(t) ∈ Cr×r is invertible.

rank r � m, n



Dynamical low-rank approximation

Low-rank manifold M = {Y ∈ Cm×n : rank Y = r}
Orthogonal projection onto the tangent space at Y ∈M: PY

Dynamical low-rank approximation: find Y (t) ∈M from ODE

Ẏ = PY F (Y ), Y (0) ∈M.

Project the vector field onto the tangent space of the
approximation manifold

Dirac 1930, quantum physics: time-dependent variational principle



Tangent space projection

Ȧ = F (A)

is approximated by

Ẏ = PY F (Y )

2008

Dirac–Frenkel time-dependent variational principle



Differential equations for the factors

Ȧ = F (A) is approximated by Ẏ = PY F (Y )

Y (t) = U(t)S(t)V (t)T ≈ A(t)

with
U̇ = (Im − UUT )F (Y )V S−1

V̇ = (In − VV T )F (Y )T US−T

Ṡ = UT F (Y )V

derived and analysed by Koch & L. 2007



Small singular values: high curvature

Ẏ = PY F (Y ) yields ODEs for the factors of Y = USV ∗.

However, the ODEs for U,S,V are a pain to integrate numerically:
they contain S−1 as factor, S is typically ill-conditioned

Geometric obstruction: with σr = smallest nonzero singular value,

1
σr
∼ curvature of M at Y

Is tangent space projection a reasonable approach for a
manifold with high curvature?
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Numerical experiment: integrator errors
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Runge-Kutta method (left) and projector-splitting integrator (right)
for different approximation ranks and stepsizes, for a problem with
singular values 2−jet for j = 1, . . . , 100, at t = 1.



Projector-splitting integrator

Split the tangent space projection, which at Y = USV ∗ is an
alternating sum of three subprojections:

PY Z = ZVV ∗ − UU∗ZVV ∗ + UU∗Z .

Splitting integrator:
I updates the factorization Yn = UnSnV ∗

n from n to n + 1.
I alternates between solving differential equations for slim

matrices (US, S, VS∗) and orthogonal decompositions.

L. & Oseledets 2014, BIT

Extension to matrix product states:
L., O. & Vandereycken 2015, SIAM J. Numer.Anal.

Haegeman, L., O., V., Verstraete 2016, Phys. Rev. B

misnomer “TDVP”



Numerical experiment: integrator errors
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Runge-Kutta method (left) and projector-splitting integrator
(right) for different approximation ranks and stepsizes, for a
problem with singular values 2−jet for j = 1, . . . , 100, at t = 1.

The projector-splitting integrator is robust to small singular values.



Robustness to small singular values

The projector-splitting integrator
I reproduces rank-r matrices exactly.
I admits convergent error bounds that are independent of the

singular values.

Why so robust?
In each substep of the algorithm, the approximation moves along a
flat subspace of the manifold M of rank-r matrices. In this way,
the high curvature due to small singular values does no harm.

Kieri, L. & Walach 2016
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More flexible framework: BUG integrators

Basis Update & Galerkin integrators

In a time step starting from the factored rank-r0 matrix U0S0V ∗
0 ,

update to a factored rank-r1 matrix U1S1V ∗
1 :

1. Update and augment the orth. bases U0,V0 to Û, V̂ :

– integrate K̇ = F (KV ∗
0 )V0, K (t0) = K0 = U0S0 and

L̇ = F (U0L∗)∗U0, L(t0) = L0 = V0S∗
0

– orthogonalise: Û =orth[K0,K1] and V̂ =orth[L0, L1]
(2r0 basis vectors)

2. Use a variational method (Galerkin method) with the
augmented bases Û and V̂ to update S0 to Ŝ1 ∈ C2r0×2r0 .

3. Truncate Ŝ1 → S1 ∈ Cr1×r1 and reduce bases to U1,V1 with
r1 basis vectors via an SVD of Ŝ1, with adaptive rank r1
controlled by the given truncation tolerance

Ceruti, Kusch, L. 2022 – 2024



More flexible framework: BUG integrators (ctd.)

Favourable properties:

I easy rank adaptivity and enhanced parallelism,
I conservation and dissipation properties (up to truncation),
I preserves symmetry and anti-symmetry (bosons and fermions)
I no backward time step (dissipative problems)

I fully parallel version
I variants with higher robust approximation order

again: robust to small singular values

Ceruti, Kusch, L. 2022 – 2024
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From low-rank matrices to tree tensor networks

Systematic extension of low-rank integrators and their properties:

Low-rank matrices of rank r
→ Tucker tensors of multilinear rank (r1, . . . , rm)
→ general tree tensor networks (TTN) of tree rank (rτ )τ≤τ

Formulation, implementation and analysis of numerical methods
for TTNs require a concise common mathematical formalism.
(Pictures can be helpful to develop some intuition.)

I Projector-splitting integrator for TTNs:
Ceruti, L. & Walach 2021, SIAM J. Numer. Anal.

I Rank-adaptive BUG integrator for TTNs:
Ceruti, L. & Sulz 2023, SIAM J. Numer. Anal.

I Parallel rank-adaptive BUG integrator for TTNs:
Ceruti, Kusch, L. & Sulz 2025, SIAM J. Sci. Comput.
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