Memory-efficient nonequilibrium Green's function framework built on quantics tensor trains

Maksymilian Środa University of Fribourg, Switzerland

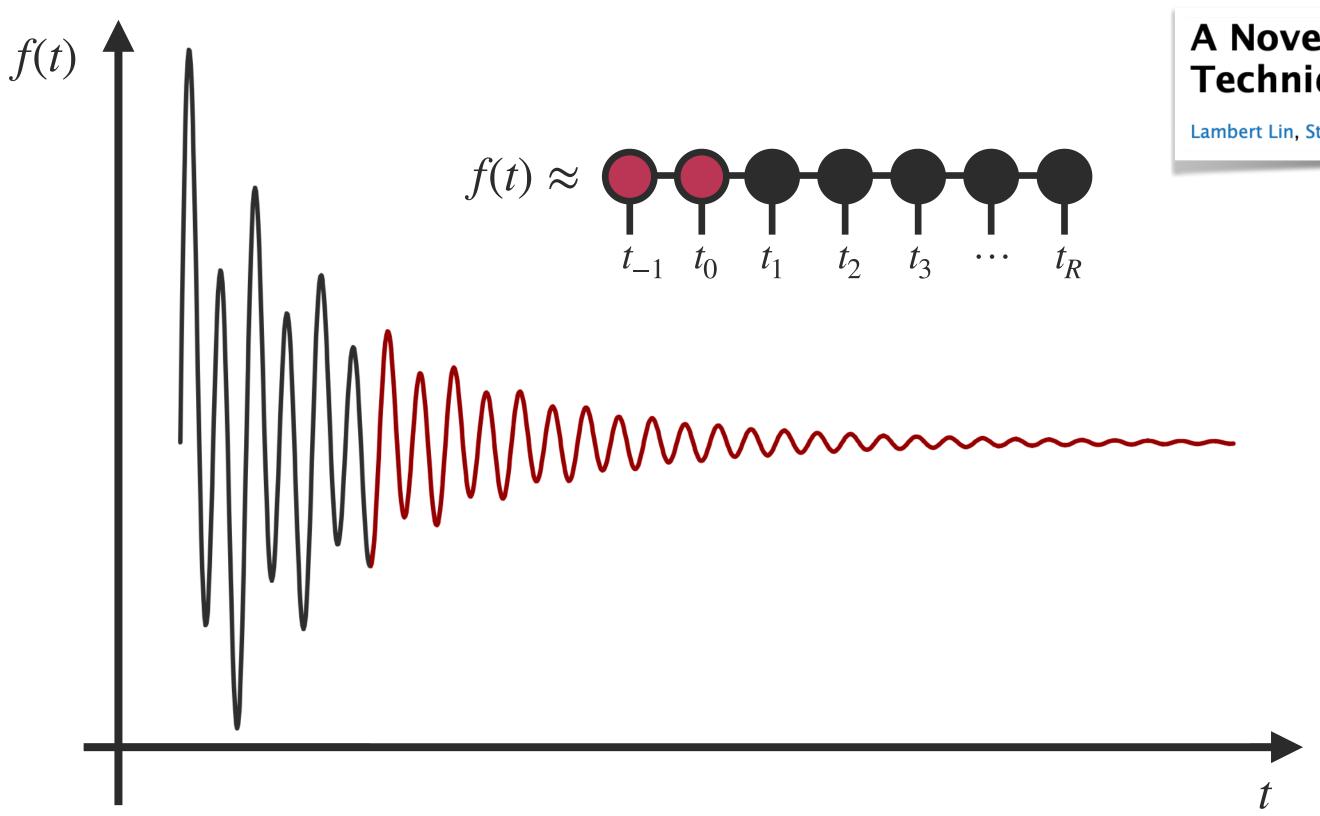
Ken Inayoshi

Michael Schüler

Hiroshi Shinaoka

Philipp Werner

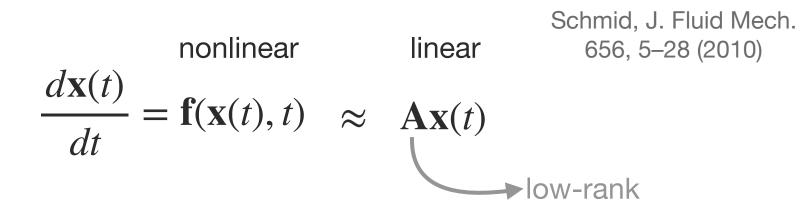
UNI FR

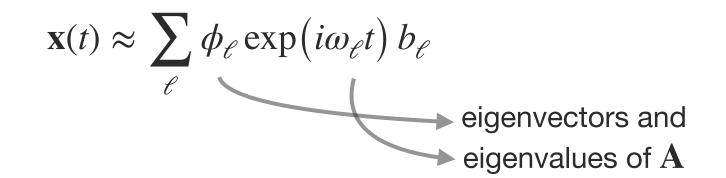


A Novel Method of Function Extrapolation Inspired by Techniques in Low-entangled Many-body Physics

Lambert Lin, Steven R White

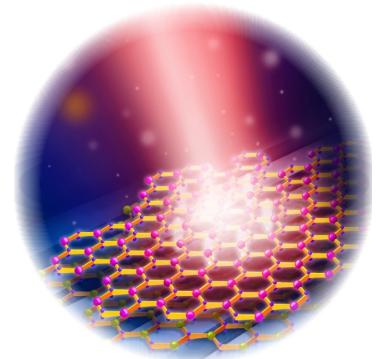
dynamic mode decomposition



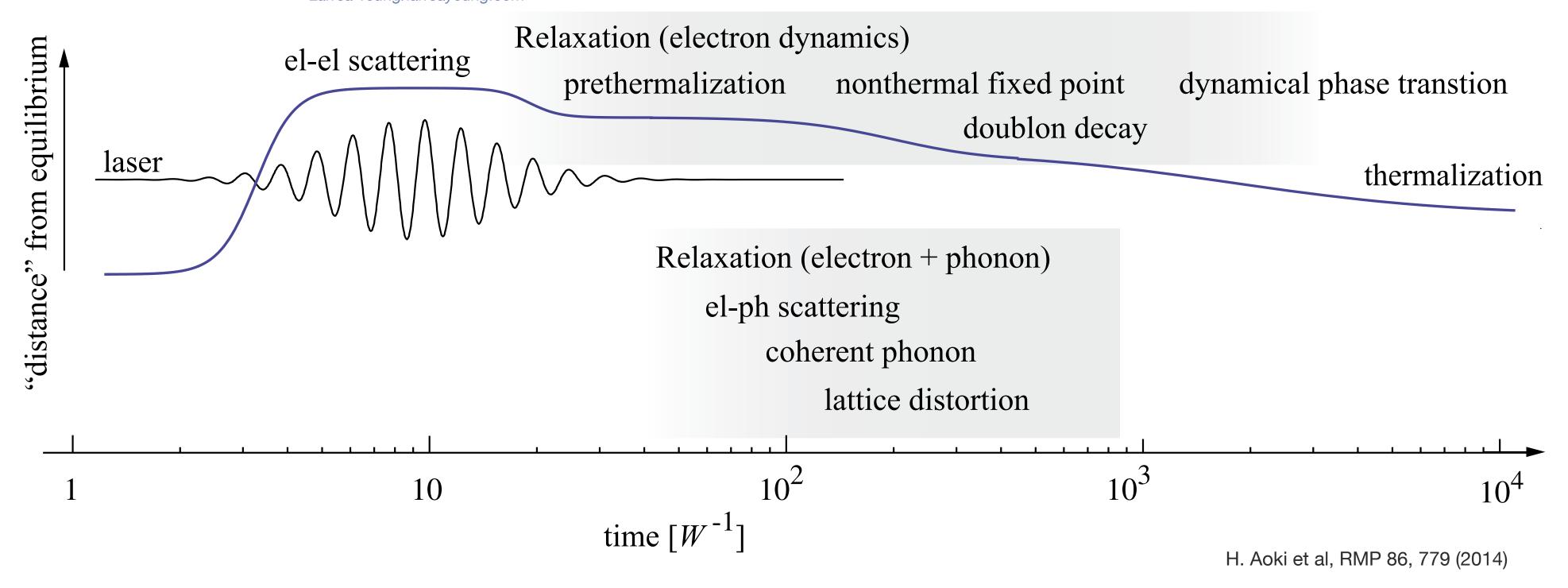


DMD integrates into the QTT framework, maintaining exponentially fine resolution, and offering extrapolation, interpolation, and denoising

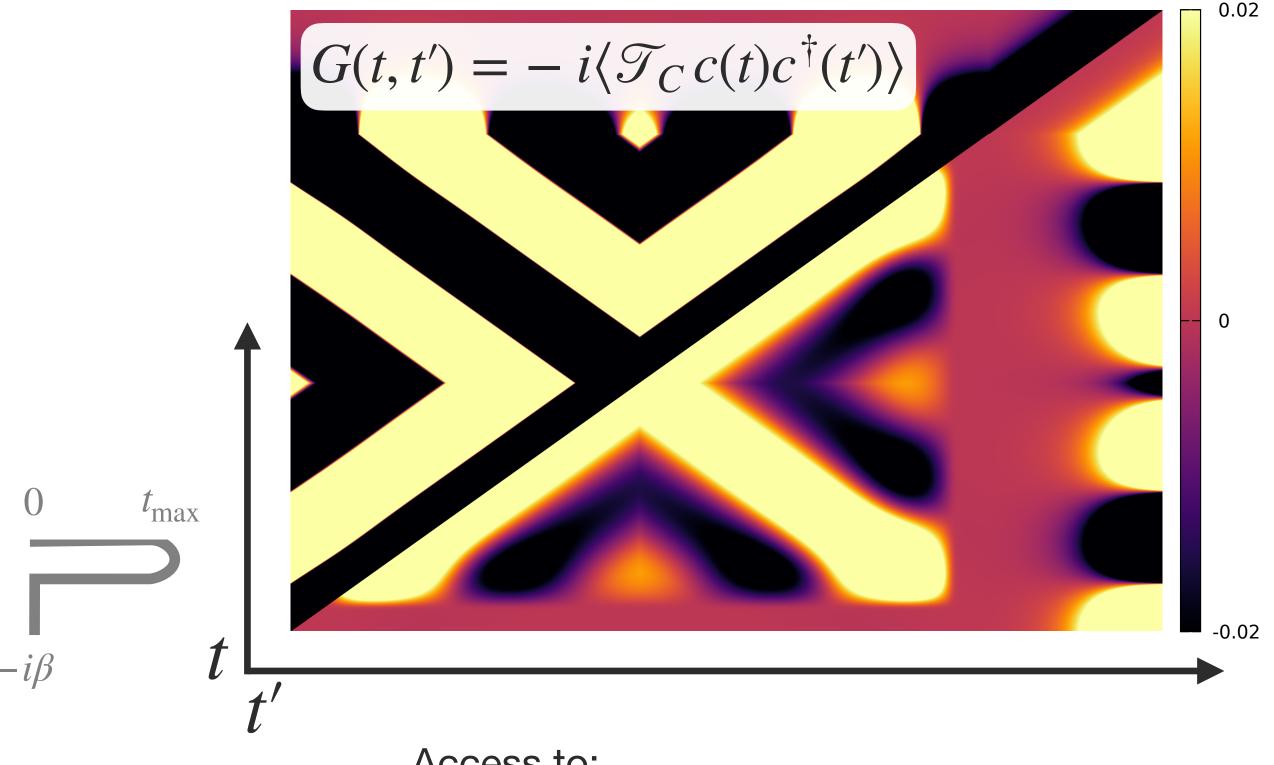
M. Środa et al, arXiv:2509.22177, 2025



Larrea Young/larreayoung.com

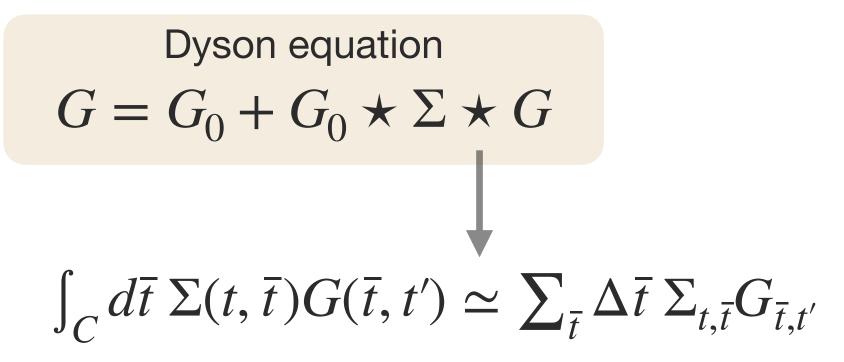


Nonequilibrium Green's function (NEGF) formalism faces a memory bottleneck



Access to:

- √ single-particle expectation values
- ✓ photoemission spectrum
- ✓ energy



convolution = matrix multiplication need to keep all previous times in memory

Ongoing work to avoid this

Sci Post

SciPost Phys. 10, 091 (2021)

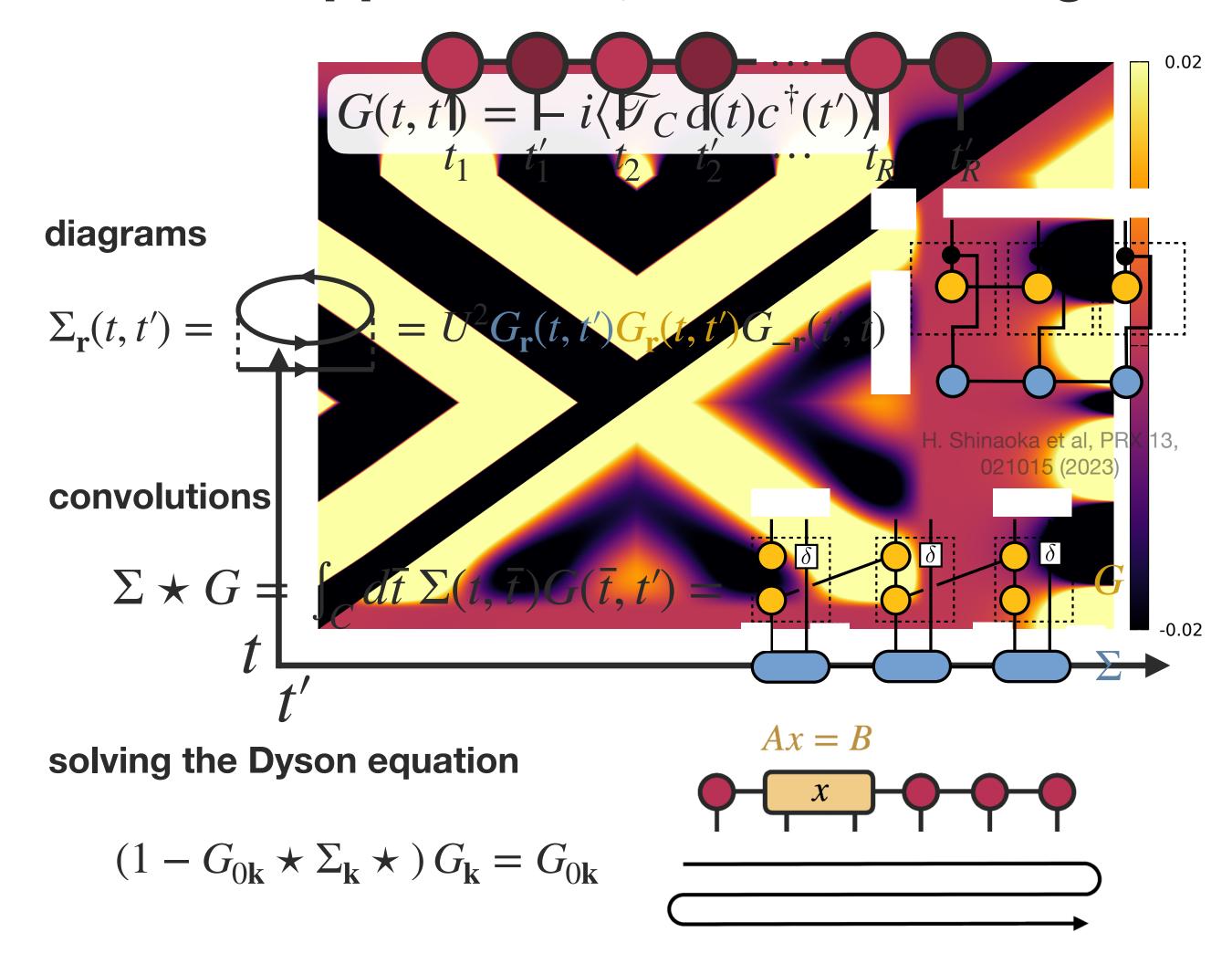
Low rank compression in the numerical solution of the nonequilibrium Dyson equation

Jason Kaye^{1,2} and Denis Golež^{2,3,4}

Memory truncated Kadanoff-Baym equations

Christopher Stahl, Nagamalleswararao Dasari, Jiajun Li, Antonio Picano, Philipp Werner, and Martin Eckstein Phys. Rev. B **105**, 115146 – Published 31 March 2022

Quantics tensor trains outcompete conventional matrixbased approaches, but the convergence is not satisfactory

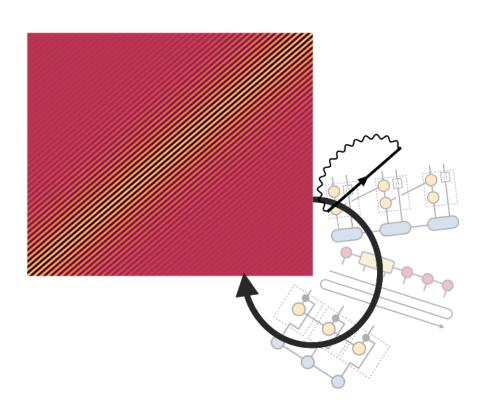


PROBLEM: unstable and slow convergence, difficulty extending $t_{\rm max}$ and increasing U

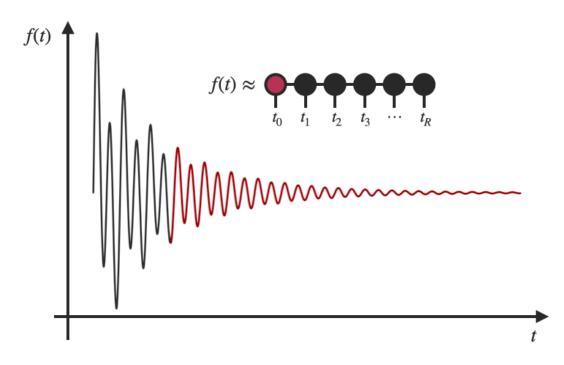
SOLUTION: reliable extrapolated initial guess and causality-based solver

M. Środa et al, arXiv:2412.14032, 2024

Global and causal self-consistency



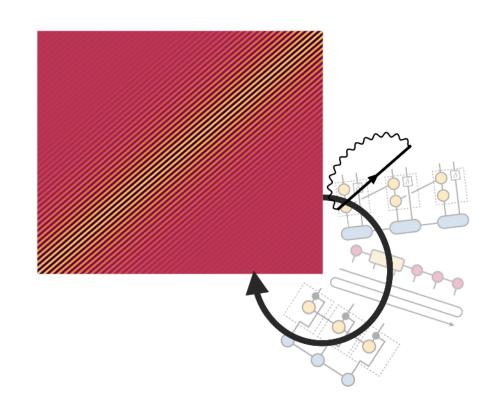
Extrapolating QTTs with dynamic mode decomposition



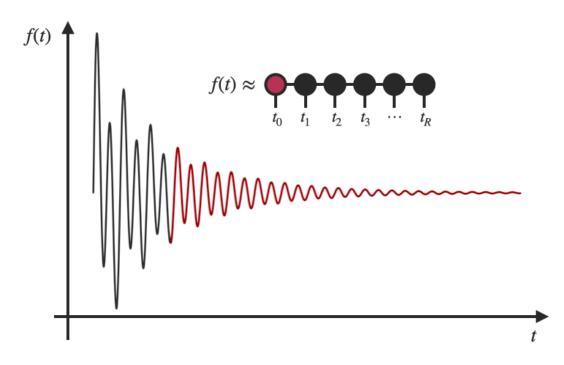
Results in application to nonequilibrium Green's functions

$$\Sigma = iGW$$

Global and causal self-consistency



Extrapolating QTTs with dynamic mode decomposition



Results in application to nonequilibrium Green's functions

$$\Sigma = iGW$$

Simplest solver uses a global update which suffers from convergence issues

Take ansatz $G_{\mathbf{k}}(t,t')$

Update by solving

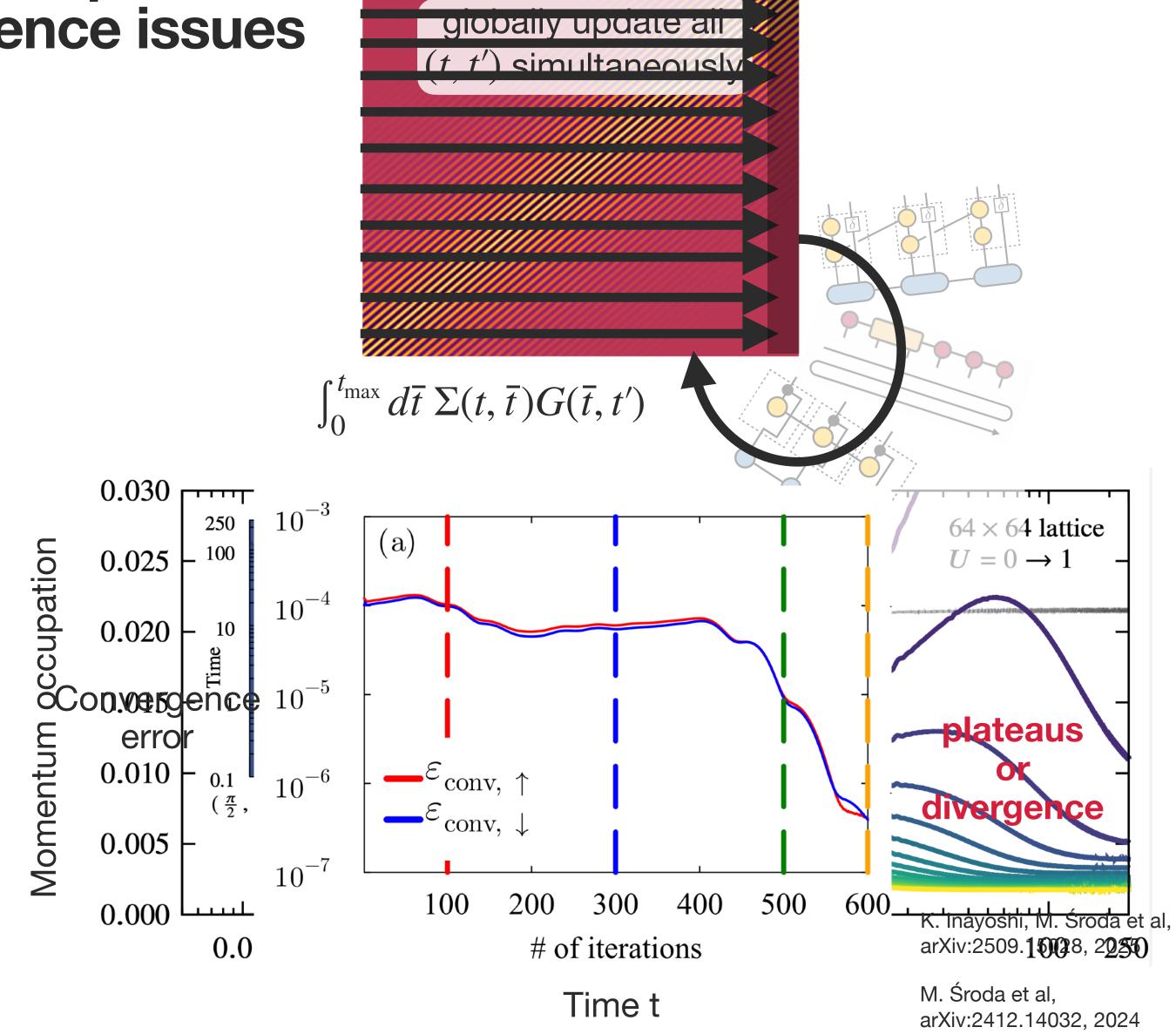
$$(1 - G_{0\mathbf{k}} \star \Sigma_{\mathbf{k}} [G_{\mathbf{k}}^{(n-1)}] \star) G_{\mathbf{k}}^{(n)} = G_{0\mathbf{k}}$$

which defines the new as a functional of the old, $G_{\mathbf{k}}^{(n)}[G_{\mathbf{k}}^{(n-1)}]$

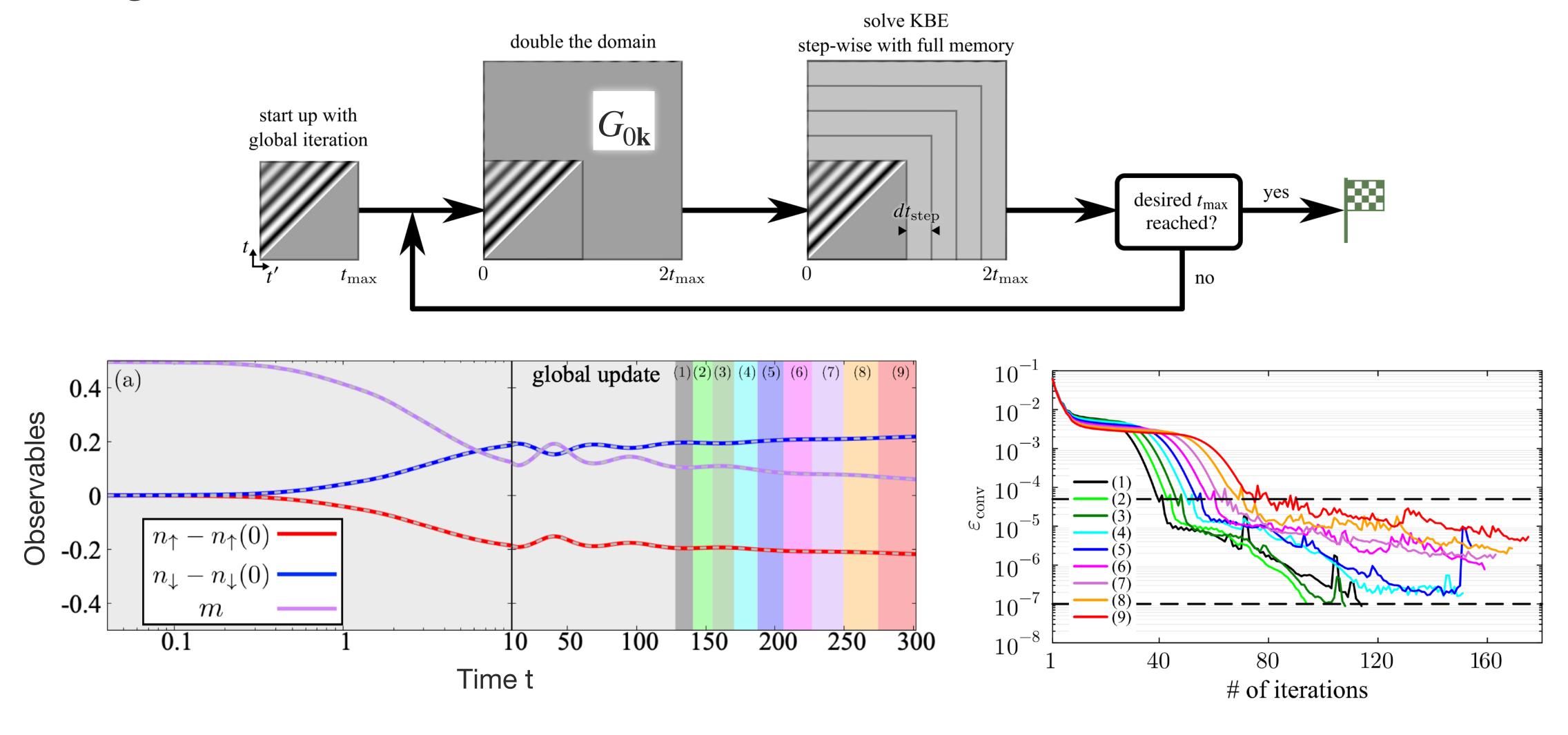


look for fixed point

$$G_{\mathbf{k}}^{(n)}[G_{\mathbf{k}}^{(n-1)}] = G_{\mathbf{k}}^{(n-1)}$$

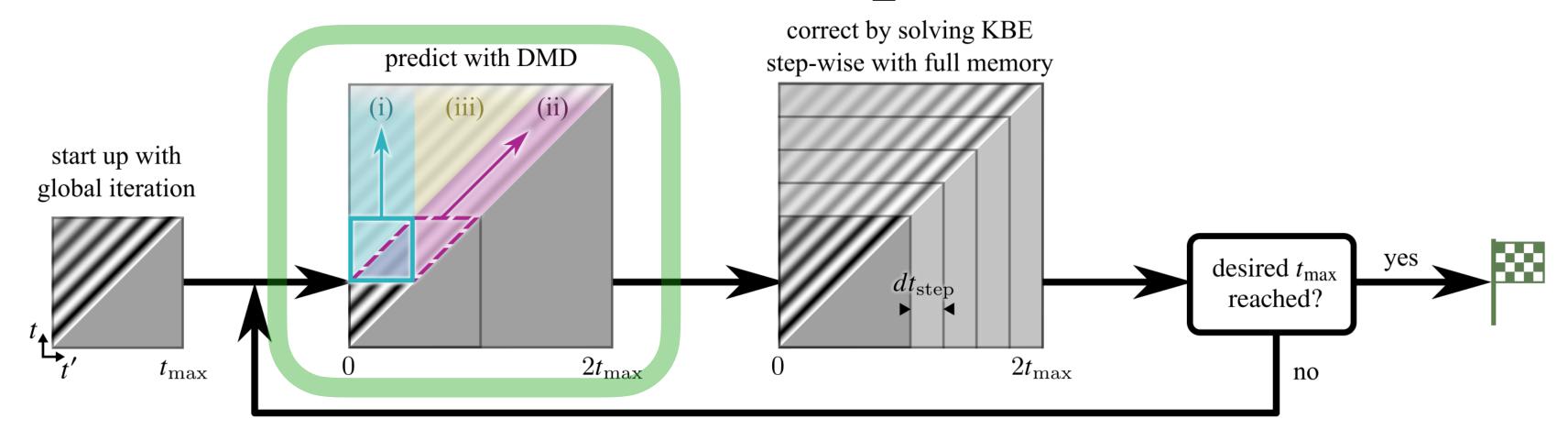


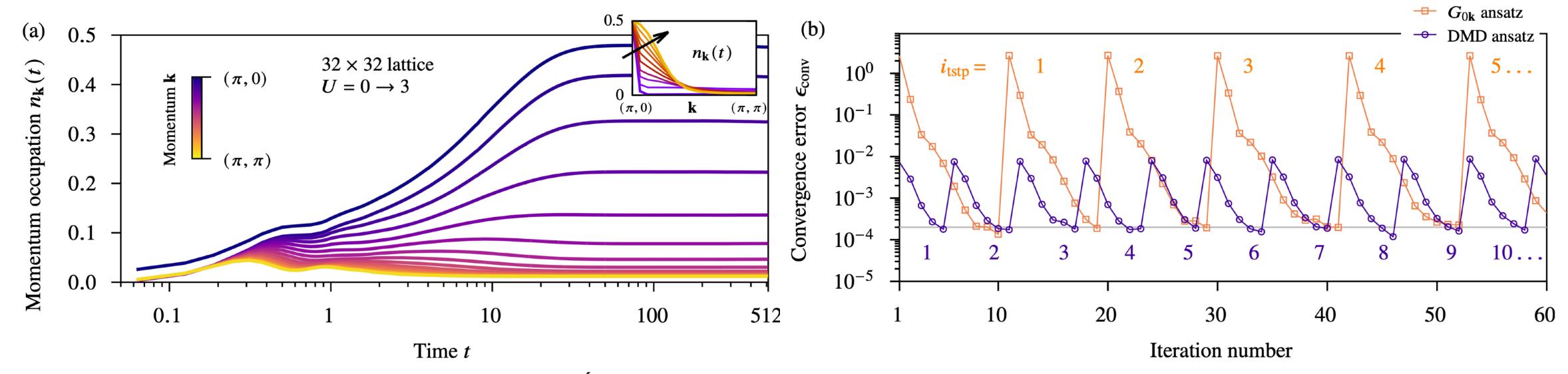
Enforcing causality makes convergence more stable



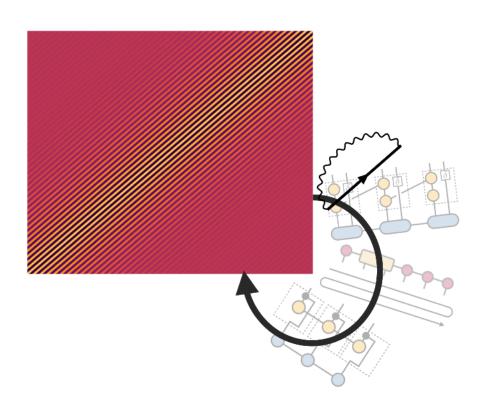
K. Inayoshi, M. Środa et al, arXiv:2509.15028, 2025

Using DMD extrapolation as initial guess gives stable, predictable and accelerated convergence

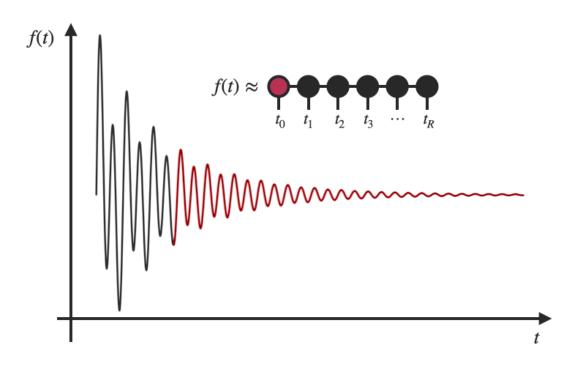




Global and causal self-consistency



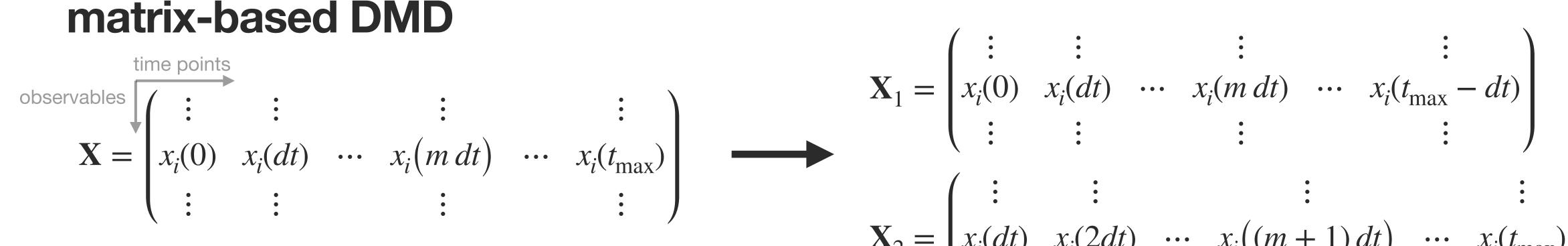
Extrapolating QTTs with dynamic mode decomposition



Results in application to nonequilibrium Green's functions

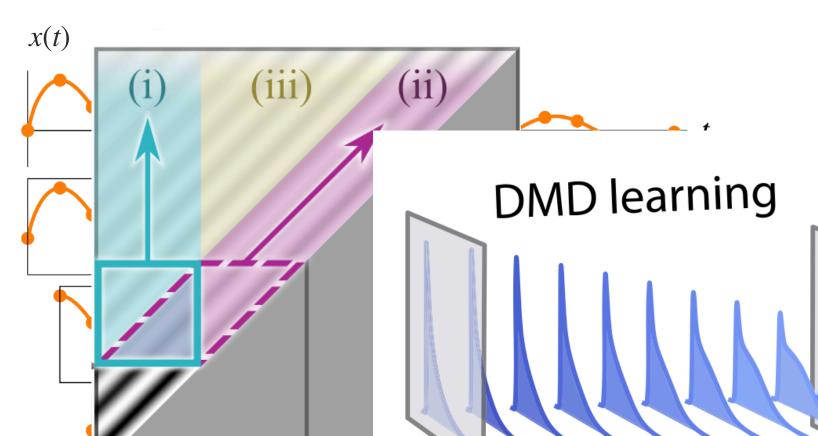
$$\Sigma = iGW$$

Let's recall the matrix-based DMD



$$\mathbf{X}_1 = \begin{pmatrix} \vdots & \vdots & \vdots & \vdots \\ x_i(0) & x_i(dt) & \cdots & x_i(m dt) & \cdots & x_i(t_{\max} - dt) \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

$$\mathbf{X}_{2} = \begin{pmatrix} \vdots & \vdots & \vdots & \vdots \\ x_{i}(dt) & x_{i}(2dt) & \cdots & x_{i}((m+1)dt) & \cdots & x_{i}(t_{\max}) \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$



DMD prediction

Diagonalize $\tilde{\mathbf{U}}^{\dagger} \mathbf{A} \tilde{\mathbf{U}} \xrightarrow{\rightarrow} \text{modes } \phi_{\mathbf{k}}^{l}$ $\rightarrow \text{frequencies } \omega_{l}^{\text{DMD}}$

mode amplitudes b_l from $f_{\mathbf{k}}(t_1)$

Kaneko et al., PRR 7, 013085 (2)

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{A}\mathbf{x}(t) \longrightarrow \mathbf{X_2} = \mathbf{A}\mathbf{X_1}$$

$$\mathbf{A} = \mathbf{X_2}\mathbf{X_1}^{-1}$$

$$\mathbf{X_1} \approx \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\top}$$
(full operator would be
$$\mathbf{A} = \mathbf{X_2}\tilde{\mathbf{V}}\tilde{\mathbf{\Sigma}}^{-1}\tilde{\mathbf{U}}^{\dagger}$$
)

 $\mathbf{X_2}$

ightarrow SVD: $\mathbf{X}_1pprox ilde{\mathbf{U}} ilde{\mathbf{\Sigma}} ilde{\mathbf{V}}^\dagger$

I. Maliyov et al., npj Computational Materials 10, 123 (2024)

Let's translate DMD into the QTT language

Assume quantics encoding $m = t/dt = [t_1, \dots, t_R]_2$

and **assume** *i* **also factorizes** in some way.

 X_1, X_2 obtained by a shift with MPO (and zeroing of the last col)

We aim to find the operator

$$AX_1 = X_2, \quad A = X_2X_1^{-1}$$

The pseudoinverse thus is the usual

$$X_1^{-1} = VS^{-1}U^\dagger = \underbrace{\downarrow \downarrow \downarrow}_{t_{\overline{n}}} \underbrace{\downarrow \beta}_{t_{\overline{n}}} \underbrace{\downarrow \gamma}_{i_{\overline{n}}} \underbrace{$$

Define $\operatorname{rank-}r$ approximation to the full operator A

$$\tilde{A} \equiv U^{\dagger} A U = U^{\dagger} X_2 V S^{-1}$$

Diagrammatically,

$$U^{\dagger}X_{2}V = \begin{bmatrix} I_{n} & I_{n} & I_{n} \\ U^{\dagger} & A & A \end{bmatrix} V = \begin{bmatrix} I_{n} & I_{n} & I_{n} \\ \alpha & \beta \end{bmatrix}$$

$$\tilde{A} = \alpha \xrightarrow{\beta} \alpha' = \alpha'$$

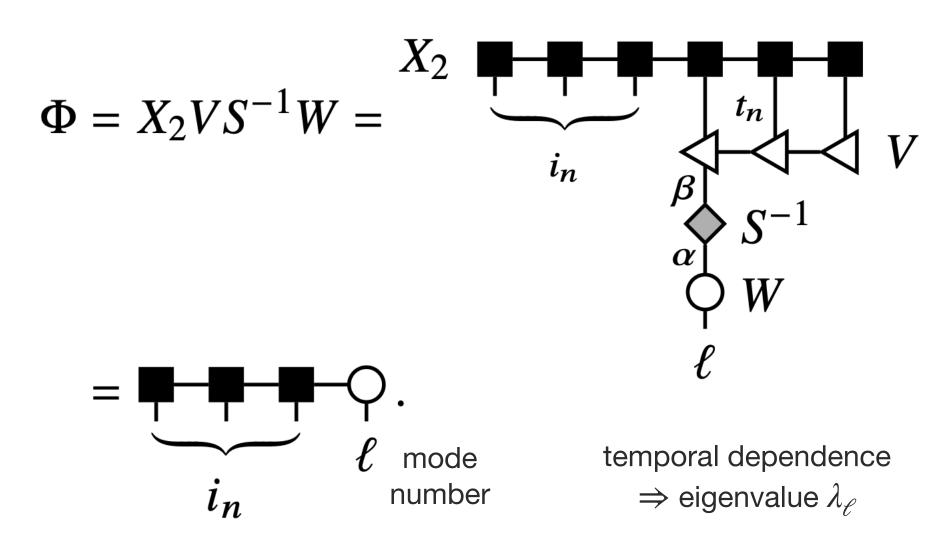
$$\tilde{\alpha} \alpha'$$

Eigendecompose with a std dense-matrix algorithm

$$ilde{A} = \bigcap_{\alpha} \stackrel{\ell}{\Omega} \stackrel{\ell'}{\Omega} \stackrel{\ell'}{\Omega} ,$$
 $ilde{lpha} \stackrel{\alpha}{lpha} \stackrel{\alpha'}{lpha} \stackrel{\alpha'}{lpha} \stackrel{\alpha'}{lpha} ,$

Matrices Λ , W contain approximate eigenvalues and eigenvectors in the reduced space.

The dynamic modes are the eigenvectors of full A in the original space, hence transforming back



"spatial" dependence

The dynamic mode decomposition is a spatio-temporal superposition of the modes Φ with amplitudes b,

$$X \approx \Phi \Lambda^m b = \Phi \operatorname{diag}(|\lambda_{\ell}|^m e^{i\omega_{\ell} m}) b,$$

$$m = t/dt = [t_1, \dots, t_R]_2$$

Amplitudes are fitted to the initial condition x

$$b = \Phi^{-1} \bigcirc \overline{i_{\overline{n}}} = \bigcirc$$

Finally, we prepare Λ^m as a single QTT representing all m powers.

For a single eigenvalue λ , we note that

$$\lambda^{m} = e^{m \ln \lambda} = e^{[t_1, \dots, t_R]_2 \ln \lambda} = \prod_{n=1}^{R} e^{2^{R-n} t_n \ln \lambda} = \widehat{\nabla}^{\frac{1}{2}} \widehat{\nabla}^{\frac{1}{2}} \widehat{\nabla},$$

We repeat the above for each λ , tag each QTT with a dummy tensor, and sum

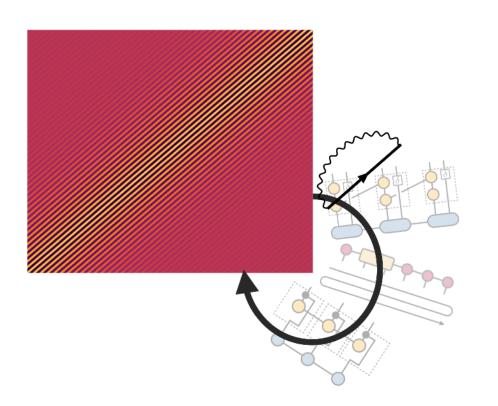
$$b = \begin{array}{c} \bigcirc \\ \ell' \end{array}$$

So we perform the final contraction:

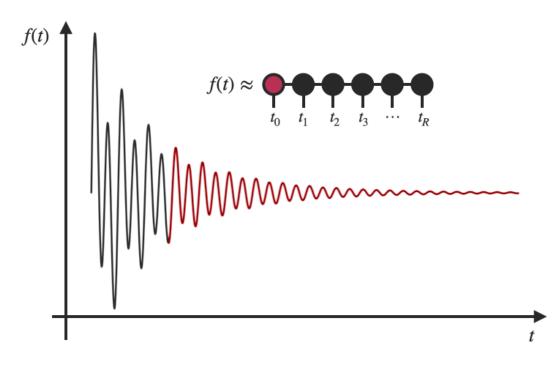
$$X \approx \Phi \Lambda^m b = \Phi \operatorname{diag}(|\lambda_\ell|^m e^{i\omega_\ell m}) b,$$

- ✓ "recompression"
- ✓ denoising (set cutoff appropriately in initial SVD of X_1)
- ✓ extrapolation (add coarse tensor in Λ^m)
- ✓ interpolation (add fine tensor in Λ^m)
- ✓ DMD is general (not only time dynamics, no smoothness requirement)

Global and causal self-consistency



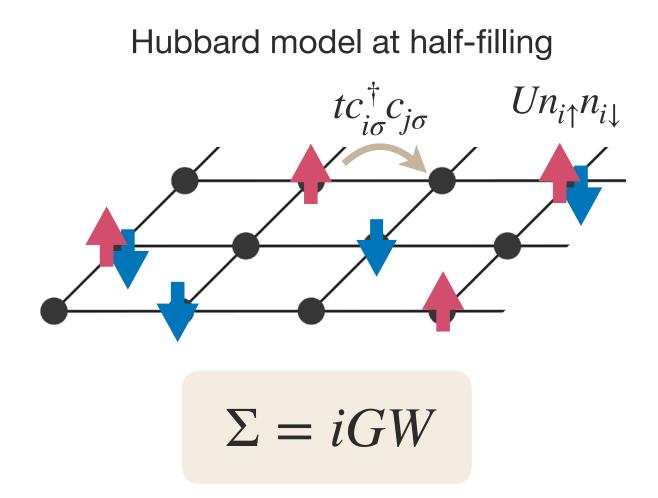
Extrapolating QTTs with dynamic mode decomposition

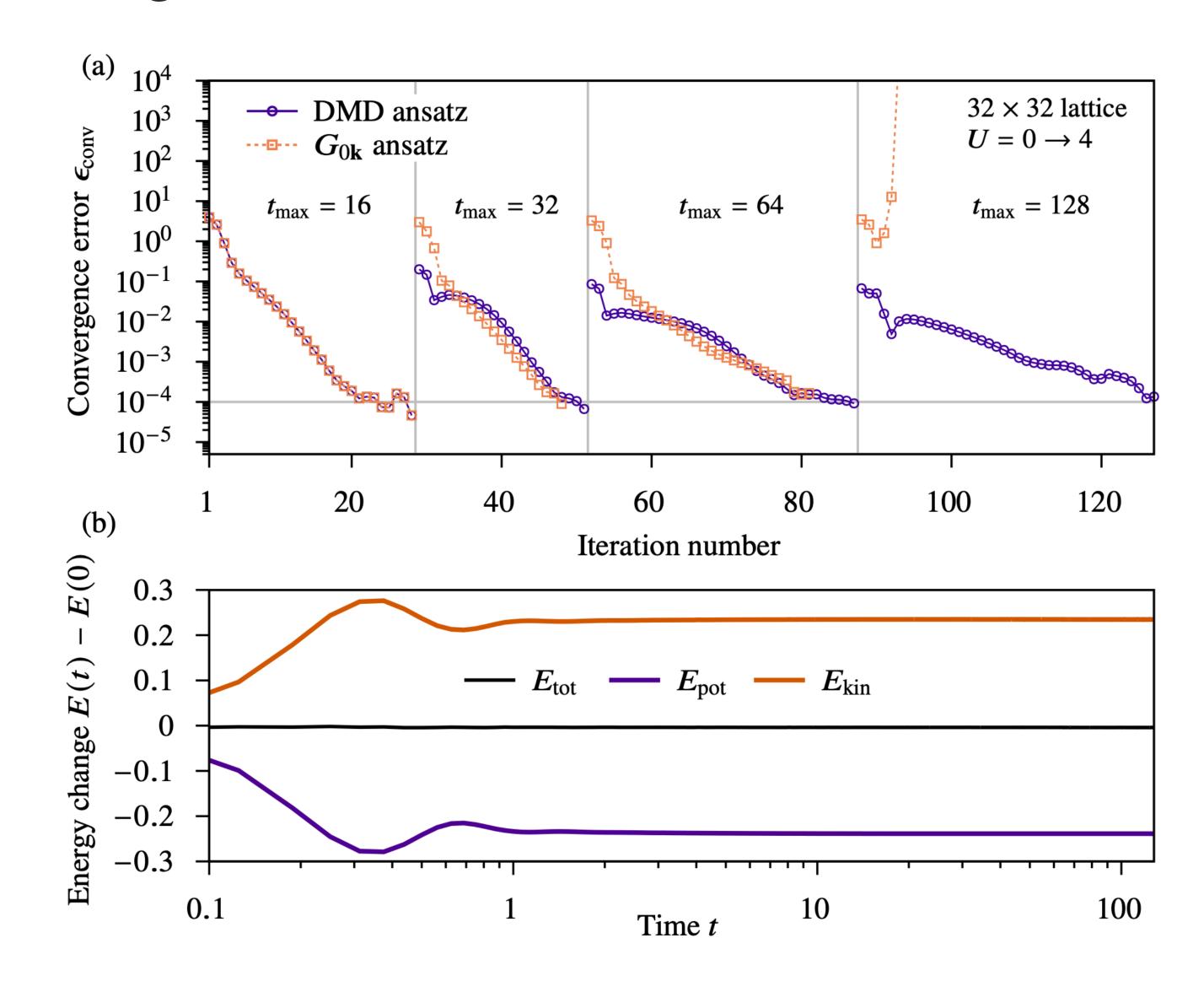


Results in application to nonequilibrium Green's functions

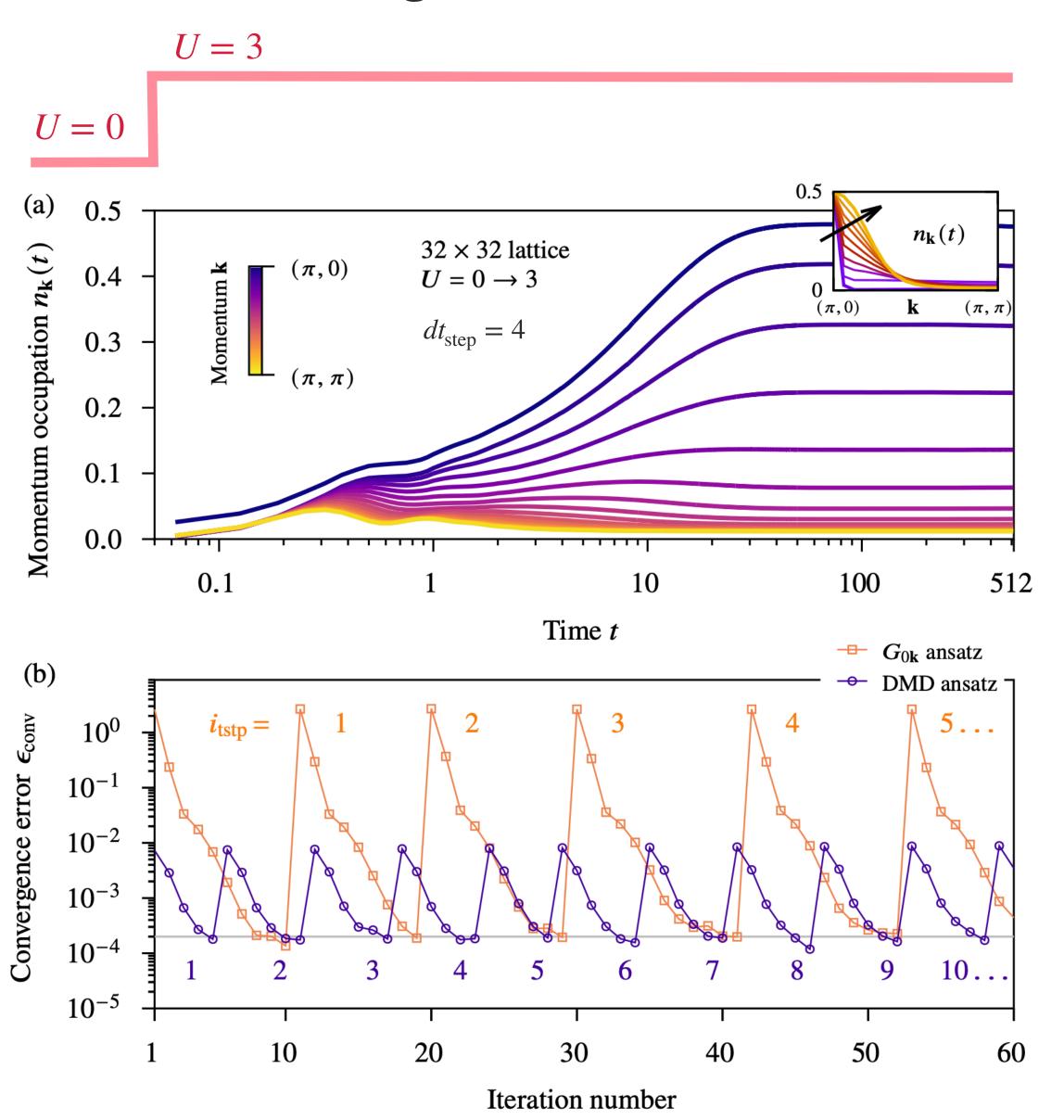
$$\Sigma = iGW$$

DMD guess stabilizes convergence

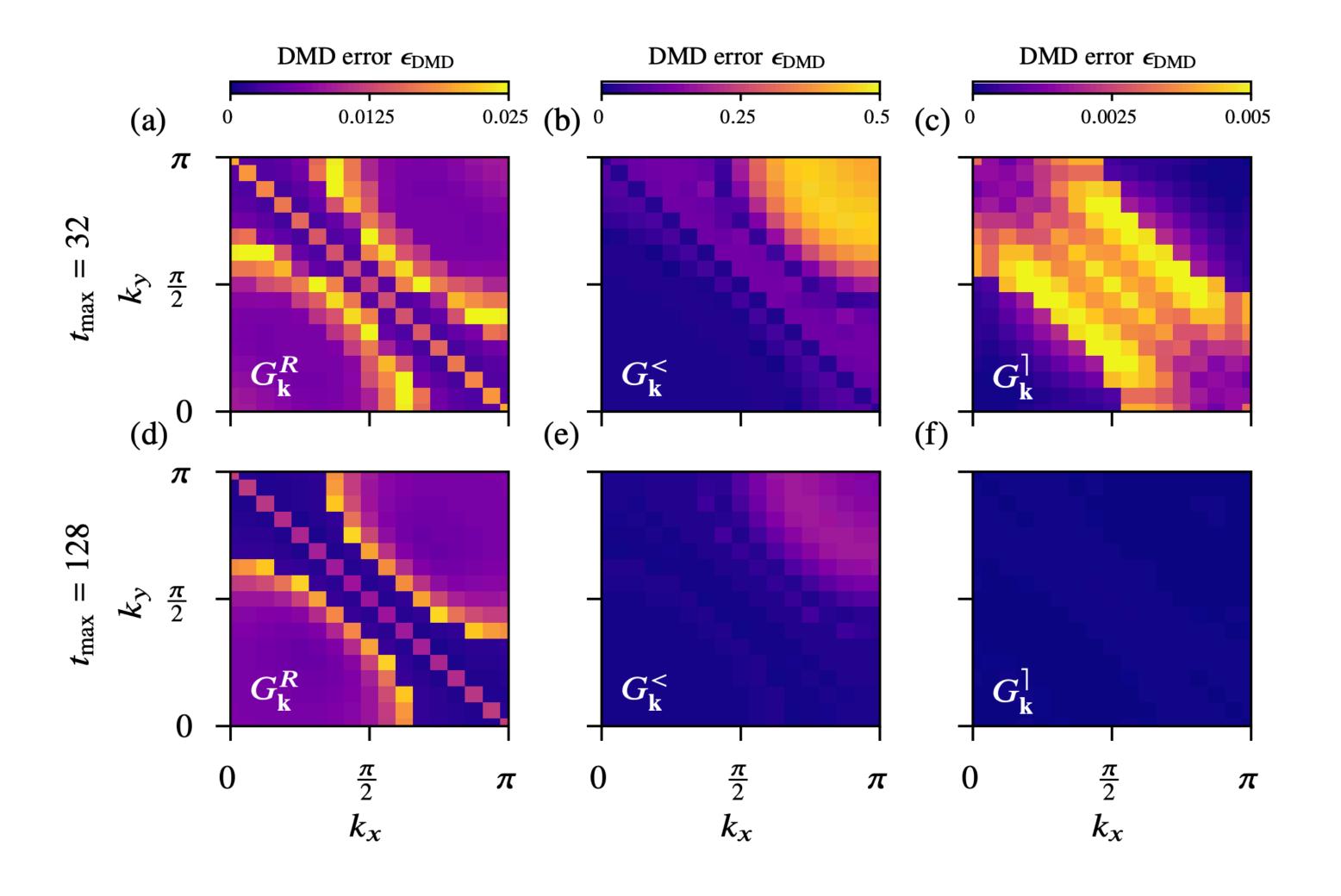




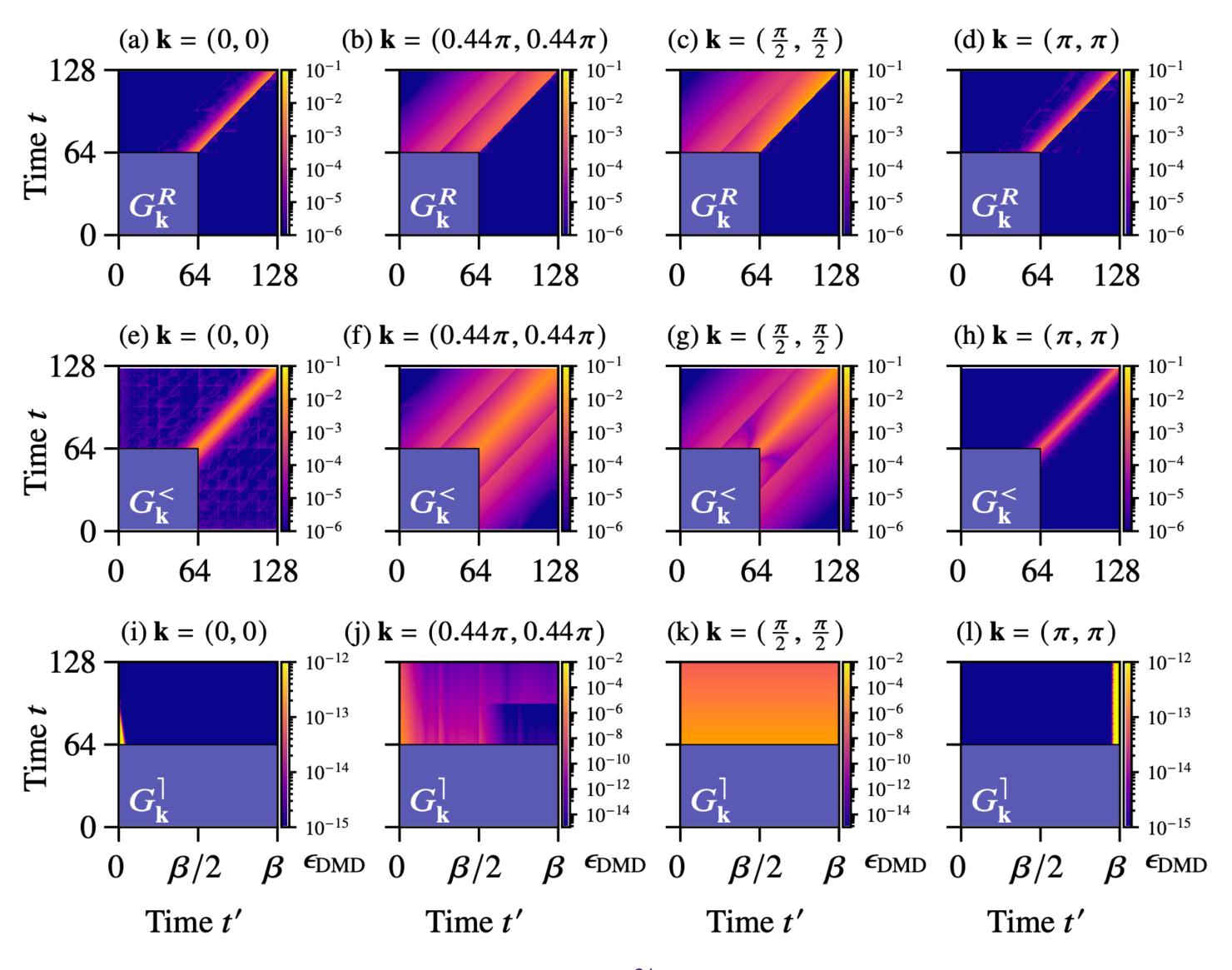
DMD guess accelerates convergence



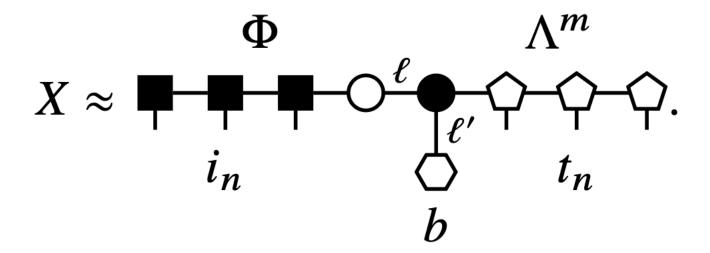
DMD guess is accurate across the BZ



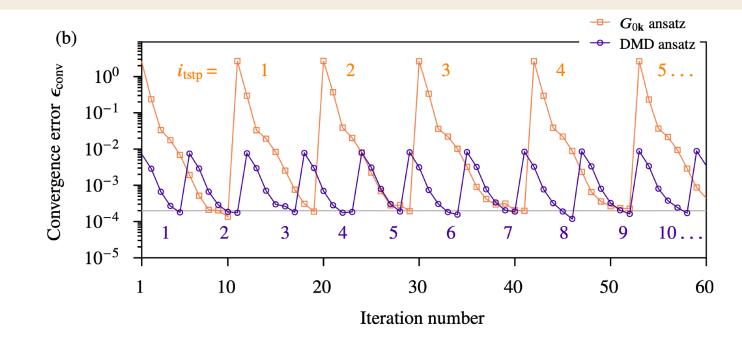
DMD guess is accurate in the two-time plane



DMD is fully composable with the QTT framework and the algorithm is straightforward



QTT-DMD provides reliable extrapolation for NEGF problems, accelerating convergence



M. Środa et al, arXiv:2509.22177, 2025

DMD integrates into the QTT framework, maintaining exponentially fine resolution, and offering extrapolation, interpolation, and denoising

