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correlated Mott and charge-transfer insulators (Ogasawara
et al., 2000; Iwai et al., 2003; Perfetti et al., 2006; Kübler
et al., 2007; Okamoto et al., 2007, 2008), the pump-induced
melting and recovery of charge density waves (Schmitt et al.,
2008; Hellmann et al., 2010; Petersen et al., 2011) with
studies combining structural and electronic dynamics
(Eichberger et al., 2010), and ultrafast dynamics induced in
ferromagnets (Beaurepaire et al., 1996) or antiferromagnets
(Ehrke et al., 2011), to name only a few.
Remarkably, ultrafast pump-probe spectroscopies have not

only unveiled the response to strong external fields, but also
provide means to manipulate phases of correlated electron
systems. One manifestation of strong correlations, in equi-
librium, is the Mott insulator, where the large cost in energy of
putting two electrons on the same site leads to a charge
excitation gap and inhibits conduction. Using an intense laser
pulse, one can excite electrons across the charge gap, which
drives the system into a nonequilibrium but relatively long-
lived conducting state (Ogasawara et al., 2000; Iwai et al.,
2003; Perfetti et al., 2006; Okamoto et al., 2007). Such a
process, sometimes called photodoping (Nasu, 2004), is a
typical example of a pathway to new phases, where mobile
carriers are introduced in situ, as distinct from techniques
employed in equilibrium, where the carrier concentration is
typically controlled by chemical doping (Imada, Fujimori, and
Tokura, 1998).
A major difficulty in describing strongly correlated systems

is the large dimension of the Hilbert space, which is a problem
in equilibrium and becomes an even more serious challenge in
nonequilibrium. One factor that makes the treatment of time-
evolving quantum many-body systems challenging is the wide
range of relevant time scales. One might first expect that
strong interactions would help to quickly restore an equilib-
rium state after a perturbation, due to fast interparticle
scattering. However, contrary to the naive expectation, the
dynamics of correlated systems generally exhibits a variety of
time scales, which can be orders of magnitude different from
the intrinsic microscopic time scale of the system, as sketched
in the left panel of Fig. 2. The initial dynamics of a system
excited by pumping is governed by the electronic degrees of
freedom. The excitation during photoirradiation takes place

via Fermi’s golden rule (linear-response theory) or the
Schwinger mechanism (Landau-Zener tunneling in strong
fields), depending on whether or not the photon energy is
larger than the energy gap. During the laser application, the
system may also reach a nonequilibrium time-periodic steady
state (a so-called Floquet state; see Sec. II.D) for which the
effective (temporal-Fourier transformed) Hamiltonian can
drastically differ from the original one.
After the pulse irradiation, electronic relaxation processes

set in (Fig. 2). In Mott insulators, e.g., doublons (doubly
occupied sites) and holes, which are created in the first stage,
start to annihilate in pairs. The relaxation time of doublons
in a gapped system scales as (Strohmaier et al., 2010)
τ ∝ W−1 exp½αðU=WÞ lnðU=WÞ$, where U is the on-site
Coulomb repulsion, W is the electronic bandwidth, and
α ∼Oð1Þ a dimensionless constant. Thus one can see that
there emerges a new time scale, which can be orders of
magnitude longer than the intrinsic time scales (W−1 and
U−1). Even in the course of thermalization of correlated
metals, different time scales may emerge due to prethermal-
ization (Berges, Borsányi, and Wetterich, 2004), the passage
by nonthermal fixed points (Berges, Rothkopf, and Schmidt,
2008), and dynamical phase transitions (Sec. III.B). At a
certain point, the relaxation process enters a second phase
[Relaxation (electronþ phonon) in Fig. 2], where classical
degrees of freedom such as lattice distortions start to play a
role. This regime can be understood within the Frank-Condon
picture (Nasu, 2004) (inset of Fig. 2). New time scales can also
appear through criticality in the dynamics of long-range order,
such as spin-density waves or superconductivity, which may
behave classically on a long time scale (time-dependent
Ginzburg-Landau picture), but are predicted to traverse
through metastable supercritical phases (Mathey and
Polkovnikov, 2010; Tsuji, Eckstein, and Werner, 2013) on
intermediate time scales.
Another unique feature of correlated systems is that an

external perturbation may cause cooperative changes through
many-body interactions, and even drive the system into hidden
states which are not accessible via adiabatic or thermal
pathways (Ichikawa et al., 2011). While photodoping often
puts the system in a highly excited state in which the effect of
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FIG. 2 (color online). Left panel: Schematic time evolution of the system in a pump-probe experiment with various physical processes
(see text). Right panel: Comparison of a short-time approximation (Moeckel and Kehrein, 2008; Eckstein, Kollar, and Werner, 2010),
which approaches a prethermalization plateau, and nonequilibrium DMFT (Tsuji and Werner, 2013), which also describes the crossover
toward a thermal state, for a sudden switching on of the Hubbard interaction to U ¼ 0.375W.
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Nonequilibrium Green’s function (NEGF) 
formalism faces a memory bottleneck
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Access to:

✓single-particle expectation values

✓photoemission spectrum

✓energy
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Quantics tensor trains outcompete conventional matrix-
based approaches, but the convergence is not satisfactory
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The MPO is illustrated in Fig. 5(a). This allows us to use an
efficient implementation of a MPO-MPS multiplication.

C. Matrix multiplication for two-frequency objects

To solve the BSE or the Dyson equation for the non-
equilibrium Green’s function, one needs to multiply two-
frequency quantities:

Cðiν; iν00Þ ¼
X

ν0
Aðiν; iν0ÞBðiν0; iν00Þ; ð8Þ

where we perform the summation on the mesh of size 2R.
This can be expressed as a MPO-MPS product:

CðνR; ν00R;…; ν1; ν001Þ

¼
X

ðν01ν
000
1 Þ;…;ðν0Rν

000
R Þ
A
ðνRν00RÞ;…;ðν1ν001Þ
ðν0Rν

000
R Þ;…;ðν01ν

000
1 Þ
B(ðν0Rν000R Þ;…; ðν01ν0001 Þ): ð9Þ

Here, we introduced a combined index of dimension 4 ð¼ 22Þ
and an auxiliary MPO A, which is illustrated in Fig. 5(b).

D. Linear transformation of arguments
of multidimensional objects

Another typical operation required for solving a dia-
grammatic equation is the linear transformation of argu-
ments of multidimensional objects. As an example, we
consider a function with two time arguments, fðt; t0Þ.
We want to transform this into a function gðt; t0Þ ¼
f(ðt − t0Þ=2; ðtþ t0Þ=2), which depends on the relative
and average times. This linear transformation can be
represented by a MPO with a small bond dimension of
Oð1Þ because the linear transformation can be performed
almost independently at different length scales. Indeed, the
MPOs can be constructed using adders or subtractors of
binary numbers.

IV. COMPRESSION

A. Imaginary-time and Matsubara-frequency
Green’s functions

As a simple example, we consider the imaginary-time
and Matsubara-frequency dependence of the fermionic
Green’s function generated by a few poles. The Green’s
function reads

GðiνÞ ¼
Z

dω
ρðωÞ
iν − ω

¼
XNP

i¼1

ci
iν − ωi

; ð10Þ

GðτÞ ¼ −
XNP

i¼1

cie−τωi

1þ e−βωi
; ð11Þ

with

ρðωÞ ¼
XNP

i¼1

ciδðω − ωiÞ; ð12Þ

where ωi and ci are the positions of the poles and the
associated coefficients, respectively. GðiνÞ decays asymp-
totically as Oð1=iνÞ for large Matsubara frequencies (high-
frequency tail). Since we know the normalization factorPNP

i¼1 ci a priori from the commutation relation of the
operators, this contribution can be subtracted as

G̃ðiνÞ≡GðiνÞ −
PNP

i¼1 ci
iν

; ð13Þ

where G̃ðiνÞ decays faster thanO(1=ðiνÞ2). As we see later,
this subtraction slightly suppresses the bond dimension at
high temperatures.
For NP ¼ 1, GðτÞ can be represented as a MPS of bond

dimension one:

GðτÞ ¼ −
c1

1þ e−βω1

YR

t¼1

e−τt2
−tβω1 ;

¼ −
c1

1þ e−βω1
Gð1Þ · ð% % %Þ ·GðRÞ ð14Þ

with the tth TT tensor

GðtÞ
αt;αtþ1

≡ e−τt2
−tβω1δαt;αtþ1

; ð15Þ

where τ=β ¼ ð0.τ1τ2 % % % τRÞ2 and t ¼ 1; 2;…; R, while αt
and αtþ1 are indices of the virtual bonds. The coefficient in
Eq. (14) can be absorbed into one of the tensors.
For NP > 1, the bond dimension of the natural MPS of

GðτÞ is bounded from above: D ≤ NP. This explicitly
constructed MPS is highly compressible as we numerically
demonstrate below.
We investigate the compactness of the representation

for a model with NP ¼ 100 where the positions and
coefficients of the poles are chosen randomly according

(a)

(b)

FIG. 5. Tensor contraction for the elementwise product (a) and
matrix product (b) of two MPSs A and B. The filled circles in
(a) denote a superdiagonal tensor whose nonzero entries are 1.
The dashed squares denote the tensors of the auxiliary MPOs.

MULTISCALE SPACE-TIME ANSATZ FOR CORRELATION … PHYS. REV. X 13, 021015 (2023)

021015-5

= U2Gr(t, t′￼)Gr(t, t′￼)G−r(t′￼, t)Σr(t, t′￼) =

        Σ ⋆ G = ∫
C

dt̄ Σ(t, t̄ )G(t̄, t′￼) =

The MPO is illustrated in Fig. 5(a). This allows us to use an
efficient implementation of a MPO-MPS multiplication.

C. Matrix multiplication for two-frequency objects

To solve the BSE or the Dyson equation for the non-
equilibrium Green’s function, one needs to multiply two-
frequency quantities:

Cðiν; iν00Þ ¼
X

ν0
Aðiν; iν0ÞBðiν0; iν00Þ; ð8Þ

where we perform the summation on the mesh of size 2R.
This can be expressed as a MPO-MPS product:

CðνR; ν00R;…; ν1; ν001Þ

¼
X

ðν01ν
000
1 Þ;…;ðν0Rν

000
R Þ
A
ðνRν00RÞ;…;ðν1ν001Þ
ðν0Rν

000
R Þ;…;ðν01ν

000
1 Þ
B(ðν0Rν000R Þ;…; ðν01ν0001 Þ): ð9Þ

Here, we introduced a combined index of dimension 4 ð¼ 22Þ
and an auxiliary MPO A, which is illustrated in Fig. 5(b).

D. Linear transformation of arguments
of multidimensional objects

Another typical operation required for solving a dia-
grammatic equation is the linear transformation of argu-
ments of multidimensional objects. As an example, we
consider a function with two time arguments, fðt; t0Þ.
We want to transform this into a function gðt; t0Þ ¼
f(ðt − t0Þ=2; ðtþ t0Þ=2), which depends on the relative
and average times. This linear transformation can be
represented by a MPO with a small bond dimension of
Oð1Þ because the linear transformation can be performed
almost independently at different length scales. Indeed, the
MPOs can be constructed using adders or subtractors of
binary numbers.

IV. COMPRESSION

A. Imaginary-time and Matsubara-frequency
Green’s functions

As a simple example, we consider the imaginary-time
and Matsubara-frequency dependence of the fermionic
Green’s function generated by a few poles. The Green’s
function reads

GðiνÞ ¼
Z

dω
ρðωÞ
iν − ω

¼
XNP

i¼1

ci
iν − ωi

; ð10Þ

GðτÞ ¼ −
XNP

i¼1

cie−τωi

1þ e−βωi
; ð11Þ

with

ρðωÞ ¼
XNP

i¼1

ciδðω − ωiÞ; ð12Þ

where ωi and ci are the positions of the poles and the
associated coefficients, respectively. GðiνÞ decays asymp-
totically as Oð1=iνÞ for large Matsubara frequencies (high-
frequency tail). Since we know the normalization factorPNP

i¼1 ci a priori from the commutation relation of the
operators, this contribution can be subtracted as

G̃ðiνÞ≡GðiνÞ −
PNP

i¼1 ci
iν

; ð13Þ

where G̃ðiνÞ decays faster thanO(1=ðiνÞ2). As we see later,
this subtraction slightly suppresses the bond dimension at
high temperatures.
For NP ¼ 1, GðτÞ can be represented as a MPS of bond

dimension one:

GðτÞ ¼ −
c1

1þ e−βω1

YR

t¼1

e−τt2
−tβω1 ;

¼ −
c1

1þ e−βω1
Gð1Þ · ð% % %Þ ·GðRÞ ð14Þ

with the tth TT tensor

GðtÞ
αt;αtþ1

≡ e−τt2
−tβω1δαt;αtþ1

; ð15Þ

where τ=β ¼ ð0.τ1τ2 % % % τRÞ2 and t ¼ 1; 2;…; R, while αt
and αtþ1 are indices of the virtual bonds. The coefficient in
Eq. (14) can be absorbed into one of the tensors.
For NP > 1, the bond dimension of the natural MPS of

GðτÞ is bounded from above: D ≤ NP. This explicitly
constructed MPS is highly compressible as we numerically
demonstrate below.
We investigate the compactness of the representation

for a model with NP ¼ 100 where the positions and
coefficients of the poles are chosen randomly according

(a)

(b)

FIG. 5. Tensor contraction for the elementwise product (a) and
matrix product (b) of two MPSs A and B. The filled circles in
(a) denote a superdiagonal tensor whose nonzero entries are 1.
The dashed squares denote the tensors of the auxiliary MPOs.

MULTISCALE SPACE-TIME ANSATZ FOR CORRELATION … PHYS. REV. X 13, 021015 (2023)

021015-5

Σ

G

(1 − G0k ⋆ Σk ⋆ ) Gk = G0k

diagrams

convolutions

solving the Dyson equation

M. Środa et al, arXiv:2412.14032, 2024

PROBLEM: unstable and slow convergence, 
difficulty extending  and increasing tmax U

SOLUTION: reliable extrapolated initial guess and 
causality-based solver



Results in application to nonequilibrium 
Green’s functions

Ut

Σ = iGW

Global and causal self-consistency

Extrapolating QTTs with dynamic mode 
decomposition



Results in application to nonequilibrium 
Green’s functions

Ut

Σ = iGW

Global and causal self-consistency

Extrapolating QTTs with dynamic mode 
decomposition



Simplest solver uses a global update 
which suffers from convergence issues
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GðτÞ is bounded from above: D ≤ NP. This explicitly

constructed M
PS is highly com

pressible as w
e numerically

demonstrate below.

We investigate the compactness of the representatio
n

for a model with NP ¼ 100 where the positions and

coefficients of the poles are chosen randomly according

(a)

(b)

FIG. 5. Tensor contra
ction for the elementwise prod

uct (a) and

matrix product (b) o
f two MPSs A and B. The filled circles in

(a) denote a superdiagona
l tensor who

se nonzero entries are 1.

The dashed squares deno
te the tensors of th

e auxiliary MPOs.

MULTISCALE
SPACE-TIM

E ANSATZ FOR CORRELAT
ION …

PHYS. REV.
X 13, 021015 (2023)

021015-5

globally update all 
 simultaneously(t, t′￼)

∫ tmax

0
dt̄ Σ(t, t̄ )G(t̄, t′￼)

K. Inayoshi, M. Środa et al, 
arXiv:2509.15028, 2025

plateaus 
or 

divergence

Convergence 
error



Enforcing causality makes 
convergence more stable

9

G0k

K. Inayoshi, M. Środa et al, arXiv:2509.15028, 2025

Time t

O
bs

er
va

bl
es



Using DMD extrapolation as initial guess gives 
stable, predictable and accelerated convergence

10

M. Środa et al, arXiv:2509.22177, 2025



Results in application to nonequilibrium 
Green’s functions

Ut

Σ = iGW

Global and causal self-consistency

Extrapolating QTTs with dynamic mode 
decomposition



x(t)

x1(t)

x2(t)

x3(t)

Kaneko et al., PRR 7, 013085 (2025)

Let’s recall the 
matrix-based DMD

12

X =
⋮ ⋮ ⋮ ⋮

xi(0) xi(dt) ⋯ xi(m dt) ⋯ xi(tmax)
⋮ ⋮ ⋮ ⋮

X1 =
⋮ ⋮ ⋮ ⋮

xi(0) xi(dt) ⋯ xi(m dt) ⋯ xi(tmax − dt)
⋮ ⋮ ⋮ ⋮

X2 =
⋮ ⋮ ⋮ ⋮

xi(dt) xi(2dt) ⋯ xi((m + 1) dt) ⋯ xi(tmax)
⋮ ⋮ ⋮ ⋮

I. Maliyov et al., npj Computational Materials 10, 123 (2024)

xxi i,l

A = X2X−1
1

(full operator would be 
)A = X2ṼΣ̃−1Ũ†

dx(t)
dt

= Ax(t)

time points
observables



Let’s translate DMD into the QTT language
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X =
⋮ ⋮ ⋮ ⋮

xi(0) xi(dt) ⋯ xi(m dt) ⋯ xi(tmax)
⋮ ⋮ ⋮ ⋮

 obtained by a shift with MPO 
(and zeroing of the last col)

X1, X2

Assume quantics encoding

time points
observables

and assume  also factorizes in some way.i

We aim to find the operator

so we need SVD of  to calculate the pseudoinverseX1

The pseudoinverse thus is the usual 

Klus et al., Nonlinearity 
31, 3359–3380 (2018)
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Define rank-  approximation to 
the full operator 

r
A

Diagrammatically, 

Eigendecompose with a std dense-matrix algorithm 

Matrices ,  contain approximate eigenvalues and 
eigenvectors in the reduced space.

Λ W

The dynamic modes are the eigenvectors of full  
in the original space, hence transforming back

A

“spatial” dependence

mode 
number

temporal dependence 
 eigenvalue ⇒ λℓ
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The dynamic mode decomposition is a 
spatio-temporal superposition of the 
modes  with amplitudes ,Φ b

Amplitudes are fitted to the initial 
condition x

Finally, we prepare  as a single QTT representing all  
powers. 
 
For a single eigenvalue 𝜆, we note that

Λm m

We repeat the above for each , tag each QTT with a dummy 
tensor, and sum

λ



16

We have all the ingredients:

So we perform the final contraction:

✓“recompression”

✓denoising (set cutoff appropriately in initial SVD of )

✓extrapolation (add coarse tensor in )

✓ interpolation (add fine tensor in )

✓DMD is general (not only time dynamics, no smoothness requirement)

X1
Λm

Λm



Results in application to nonequilibrium 
Green’s functions

Ut

Σ = iGW

Global and causal self-consistency

Extrapolating QTTs with dynamic mode 
decomposition



DMD guess stabilizes convergence
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tc†
iσcjσ Uni↑ni↓

Hubbard model at half-filling

Σ = iGW



DMD guess accelerates convergence
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U = 0

U = 3

dtstep = 4



DMD guess is accurate 
across the BZ
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DMD guess is accurate in 
the two-time plane

21



DMD integrates into the QTT framework, 
maintaining exponentially fine resolution, and 

offering extrapolation, interpolation, and 
denoising

QTT-DMD provides reliable extrapolation for 
NEGF problems, accelerating convergence

M. Środa et al, arXiv:2509.22177, 2025

DMD is fully composable with the QTT 
framework and the algorithm is straightforward










