Tensor cross interpolation approach for the quantum impurity problem based on the weak-coupling expansion

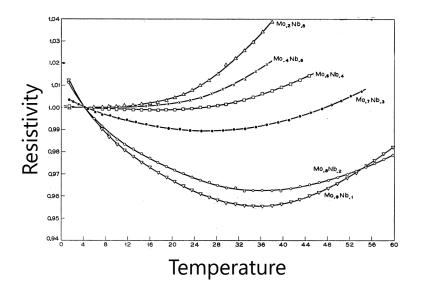
Shuta Matsuura (Univ. of Tokyo) Hiroshi Shinaoka (Saitama Univ.) Philipp Werner (Univ. of Fribourg) Naoto Tsuji (Univ. of Tokyo)

Phys. Rev. B **111**, 155150 (2025)

Outline

- Introduction
 - Quantum impurity problem and DMFT
 - Impurity solver
- Application of TCI to the impurity problem
 - Evaluation of the partition function
 - Evaluation of the Green's function
- Result
 - Exactly solvable impurity model
 - DMFT for the Hubbard model
- Summary and Outlook

Outline

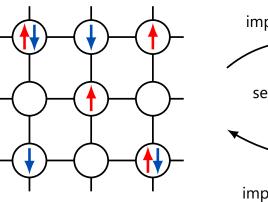

- Introduction
 - Quantum impurity problem and DMFT
 - Impurity solver
- Application of TCI to the impurity problem
 - Evaluation of the partition function
 - Evaluation of the Green's function
- Result
 - Exactly solvable impurity model
 - DMFT for the Hubbard model
- Summary and Outlook

Quantum impurity problem and DMFT

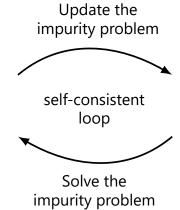
$$H = \sum_{\sigma} \varepsilon_{\sigma} c_{\sigma}^{\dagger} c_{\sigma} + U \left(n_{\uparrow} - \frac{1}{2} \right) \left(n_{\downarrow} - \frac{1}{2} \right) + \sum_{k,\sigma} \varepsilon_{k\sigma} b_{k\sigma}^{\dagger} b_{k\sigma} + \sum_{k,\sigma} (V_{k\sigma} b_{k\sigma}^{\dagger} c_{\sigma} + V_{k\sigma}^{*} c_{\sigma}^{\dagger} b_{k\sigma})$$

Kondo effect

J. Kondo, Prog. Theor. Phys. **32**, 37 (1964)



- Resistance minimum
- Formation of the Kondo-singlet


Nontrivial many-body phenomena

Dynamical mean-field theory (DMFT)

A. Georges et al., Rev. Mod. Phys. 68, 13 (1996)

Quantum impurity model

Hubbard model is mapped to the impurity model.

The important model for understanding the strongly correlated system

How to solve the impurity problem

Perturbative expansion

- The perturbative expansion (weak-coupling or strong-coupling expansion) provides a systematic way to analyze the impurity model.
- The high-order terms involve high-dimensional integrals, whose evaluation becomes the bottleneck.

Approach 1: Continuous-time Quantum Monte Carlo method (CT-QMC) E. Gull et al., Rev. Mod. Phys. 83, 349 (2011)

- The efficient method to evaluate high-dimensional integrals.
- In some cases, it suffers from the negative sign problem.

Approach 2: Tensor Cross Interpolation (TCI)

- Sign-problem-free integration
- There are several papers on the TCI impurity solver:
 - nonequilibrium impurity problem (weak-coupling expansion)
 - nonequilibrium impurity problem (strong-coupling expansion)
 - equilibrium impurity problem (strong-coupling expansion)

Y. N. Fernández *et al.*, Phys. Rev. X **12**, 041018 (2022) M. Jeannin *et al.*, arXiv:2502.16306 (2025)

M. Eckstein, arXiv:2410.19707 (2024)

A. J. Kim et al., Phys. Rev. B 111, 125120 (2025)

L. Geng et al., arXiv:2507.20385 (2025)

A. Erpenbeck *et al.*, Phys. Rev. B **107**, 245135 (2023) Y. Yu *et al.*, Phys. Rev. B **112**, 085120 (2025)

Can we solve the equilibrium impurity problem with weak-coupling expansion + TCI?

Outline

- Introduction
 - Quantum impurity problem and DMFT
 - Impurity solver
- Application of TCI to the impurity problem
 - Evaluation of the partition function
 - Evaluation of the Green's function
- Result
 - Exactly solvable impurity model
 - DMFT for the Hubbard model
- Summary and Outlook

Weak-coupling expansion

$$H = \sum_{\sigma} \varepsilon_{\sigma} c_{\sigma}^{\dagger} c_{\sigma} + U \left(n_{\uparrow} - \frac{1}{2} \right) \left(n_{\downarrow} - \frac{1}{2} \right) + \sum_{k,\sigma} \varepsilon_{k\sigma} b_{k\sigma}^{\dagger} b_{k\sigma} + \sum_{k,\sigma} (V_{k\sigma} b_{k\sigma}^{\dagger} c_{\sigma} + V_{k\sigma}^{*} c_{\sigma}^{\dagger} b_{k\sigma})$$

weak-coupling expansion

$$G_{\uparrow}(\tau) = -\left\langle T_{\tau}[c_{\mathrm{H}\uparrow}(\tau)c_{\mathrm{H}\uparrow}^{\dagger}(0)]\right\rangle = -\frac{\left\langle T_{\tau}\left[c_{\mathrm{I}\uparrow}(\tau)c_{\mathrm{I}\uparrow}^{\dagger}(0)\exp\left(-\int_{0}^{\beta}d\tau'\,H_{\mathrm{int}}(\tau')\right)\right]\right\rangle_{0}}{\left\langle T_{\tau}\exp\left(-\int_{0}^{\beta}d\tau'\,H_{\mathrm{int}}(\tau')\right)\right\rangle_{0}} \qquad H_{\mathrm{int}} = U\left(n_{\uparrow} - \frac{1}{2}\right)\left(n_{\downarrow} - \frac{1}{2}\right)$$

denominator

numerator

Weak-coupling expansion

$$H = \sum_{\sigma} \varepsilon_{\sigma} c_{\sigma}^{\dagger} c_{\sigma} + U \left(n_{\uparrow} - \frac{1}{2} \right) \left(n_{\downarrow} - \frac{1}{2} \right) + \sum_{k,\sigma} \varepsilon_{k\sigma} b_{k\sigma}^{\dagger} b_{k\sigma} + \sum_{k,\sigma} (V_{k\sigma} b_{k\sigma}^{\dagger} c_{\sigma} + V_{k\sigma}^{*} c_{\sigma}^{\dagger} b_{k\sigma})$$

weak-coupling expansion

$$G_{\uparrow}(\tau) = -\left\langle T_{\tau}[c_{\mathrm{H}\uparrow}(\tau)c_{\mathrm{H}\uparrow}^{\dagger}(0)]\right\rangle = -\frac{\left\langle T_{\tau}\left[c_{\mathrm{I}\uparrow}(\tau)c_{\mathrm{I}\uparrow}^{\dagger}(0)\exp\left(-\int_{0}^{\beta}d\tau'\,H_{\mathrm{int}}(\tau')\right)\right]\right\rangle_{0}}{\left\langle T_{\tau}\exp\left(-\int_{0}^{\beta}d\tau'\,H_{\mathrm{int}}(\tau')\right)\right\rangle_{0}} \qquad H_{\mathrm{int}} = U\left(n_{\uparrow} - \frac{1}{2}\right)\left(n_{\downarrow} - \frac{1}{2}\right)$$

denominator

$$\overline{\left\langle T_{\tau} \exp\left(-\int_{0}^{\beta} d\tau' \, H_{\mathrm{int}}(\tau')\right)\right\rangle_{0}} \; = \; \sum_{n=0}^{\infty} \frac{(-U)^{n}}{n!} \int_{0}^{\beta} d\tau_{1} \cdots d\tau_{n} \, (\det \boldsymbol{D}_{n}^{\uparrow}) (\det \boldsymbol{D}_{n}^{\downarrow})$$

numerator

$$-\left\langle T_{\tau}\left[c_{\mathrm{I}\uparrow}(\tau)c_{\mathrm{I}\uparrow}^{\dagger}(0)\exp\left(-\int_{0}^{\beta}d\tau'\,H_{\mathrm{int}}(\tau')\right)\right]\right\rangle_{0} = \sum_{n=0}^{\infty}\frac{(-U)^{n}}{n!}\int_{0}^{\beta}d\tau_{1}\cdots d\tau_{n}\,(\det\tilde{\boldsymbol{D}}_{n}^{\uparrow})(\det\boldsymbol{D}_{n}^{\downarrow})$$

$$\boldsymbol{D}_{n}^{\sigma} = \begin{pmatrix} \mathcal{G}_{\sigma}(0^{-}) - 1/2 & \mathcal{G}_{\sigma}(\tau_{1} - \tau_{2}) & \cdots & \mathcal{G}_{\sigma}(\tau_{1} - \tau_{n}) \\ \mathcal{G}_{\sigma}(\tau_{2} - \tau_{1}) & \mathcal{G}_{\sigma}(0^{-}) - 1/2 & \cdots & \mathcal{G}_{\sigma}(\tau_{2} - \tau_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ \mathcal{G}_{\sigma}(\tau_{n} - \tau_{1}) & \mathcal{G}_{\sigma}(\tau_{n} - \tau_{1}) & \cdots & \mathcal{G}_{\sigma}(0^{-}) - 1/2 \end{pmatrix} \qquad \tilde{\boldsymbol{D}}_{n}^{\sigma} = \begin{pmatrix} \mathcal{G}_{\sigma}(\tau) & \mathcal{G}_{\sigma}(\tau - \tau_{1}) & \cdots & \mathcal{G}_{\sigma}(\tau - \tau_{n}) \\ \mathcal{G}_{\sigma}(\tau_{1}) & \mathcal{G}_{\sigma}(0^{-}) - 1/2 & \cdots & \mathcal{G}_{\sigma}(\tau_{1} - \tau_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ \mathcal{G}_{\sigma}(\tau_{n}) & \mathcal{G}_{\sigma}(\tau_{n} - \tau_{1}) & \cdots & \mathcal{G}_{\sigma}(0^{-}) - 1/2 \end{pmatrix}$$

 $\mathcal{G}_{\sigma}(au)$: noninteracting Green's function

TCI can be used to evaluate these integrals.

Integration by TCI

Gauss-Kronrod quadrature + Tensor-train decomposition

$$\int_{[0,1]^n} dx_1 \cdots dx_n f(x_1, \cdots, x_n) \simeq \sum_{\sigma_1 = 1}^d \cdots \sum_{\sigma_n = 1}^d w_{\sigma_1} \cdots w_{\sigma_n} f(\tilde{x}_{\sigma_1}, \cdots, \tilde{x}_{\sigma_n})$$

$$= \sum_{\sigma_1 = 1}^d \cdots \sum_{\sigma_n = 1}^d \frac{1}{\sigma_1 \sigma_2} \cdots \frac{1}{\sigma_n}$$

$$\simeq \sum_{\sigma_1 = 1}^d \cdots \sum_{\sigma_n = 1}^d \frac{1}{\sigma_1 \sigma_2} \cdots \frac{1}{\sigma_n}$$

$$= \left(\sum_{\sigma_1 = 1}^d M_{\sigma_1}\right) \left(\sum_{\sigma_1 = 1}^d M_{\sigma_2}\right) \cdots \left(\sum_{\sigma_n = 1}^d M_{\sigma_n}\right)$$

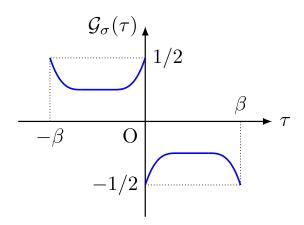
 \tilde{x}_{σ_i} : zeros of the Legendre poly.

 w_{σ_i} : suitable weights

n -fold sum cost : $\mathcal{O}(d^n)$

 $= \left(\sum_{1}^{d} M_{1}^{\sigma_{1}}\right) \left(\sum_{1}^{d} M_{2}^{\sigma_{2}}\right) \cdots \left(\sum_{1}^{d} M_{n}^{\sigma_{n}}\right)$

n single fold sums $\operatorname{\mathsf{cost}} \colon \mathcal{O}(nd\chi^2)$


The high-dimension integrals can be calculated in this way if $\begin{cases} (1) \text{ the integration domain is a hypercube,} \\ \text{and} \\ (2) \text{ the integrand is a smooth function.} \end{cases}$

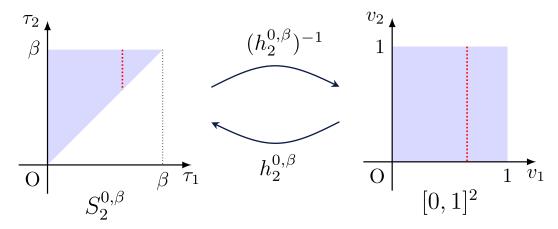
Evaluation of the denominator

$$\mathcal{I}_{n} = \frac{(-U)^{n}}{n!} \int_{0}^{\beta} d\tau_{1} \cdots d\tau_{n} P(\tau_{1}, \cdots, \tau_{n})$$

$$\mathbf{D}_{n}^{\sigma} = \begin{pmatrix} \mathcal{G}_{\sigma}(0^{-}) - 1/2 & \mathcal{G}_{\sigma}(\tau_{1} - \tau_{2}) & \cdots & \mathcal{G}_{\sigma}(\tau_{1} - \tau_{n}) \\ \mathcal{G}_{\sigma}(\tau_{2} - \tau_{1}) & \mathcal{G}_{\sigma}(0^{-}) - 1/2 & \cdots & \mathcal{G}_{\sigma}(\tau_{2} - \tau_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ \mathcal{G}_{\sigma}(\tau_{n} - \tau_{1}) & \mathcal{G}_{\sigma}(\tau_{n} - \tau_{1}) & \cdots & \mathcal{G}_{\sigma}(0^{-}) - 1/2 \end{pmatrix}$$
where $P(\tau_{1}, \cdots, \tau_{n}) \coloneqq (\det \mathbf{D}_{n}^{\uparrow})(\det \mathbf{D}_{n}^{\downarrow})$

- Removal of discontinuities
 - The noninteracting Green's function $\mathcal{G}_{\sigma}(\tau)$ has discontinuity at $\tau = 0$.
 - \implies Since the integrand includes $\mathcal{G}_{\sigma}(\tau_i \tau_j)$, it has discontinuities at $\tau_i = \tau_j$.

To remove the discontinuities, we can use the permutation symmetry $P(\tau_1, \dots, \tau_n) = P(\tau_{\sigma(1)}, \dots, \tau_{\sigma(n)})$.


$$\mathcal{I}_n = (-U)^n \int_{S_n^{0,\beta}} d\tau_1 \cdots d\tau_n \, P(\tau_1, \cdots, \tau_n) \qquad S_n^{a,b} \coloneqq \{(\tau_1, \cdots, \tau_n) \in \mathbb{R} \mid a \le \tau_1 \le \tau_2 \le \cdots \le \tau_n \le b\}$$

The integrand $P(\tau_1, \dots, \tau_n)$ is a smooth function on the simplex $S_n^{0,\beta}$.

Evaluation of the denominator

- Variable transformation
 - The integration domain has to be mapped from the simplex back to the hypercube.
 - To this end, we can use the variable transformation $h_n^{0,\beta}:[0,1]^n \to S_n^{0,\beta};(v_1,\cdots,v_n)\mapsto (\tau_1,\cdots,\tau_n)$.

$$\tau_1 = \beta(1 - (1 - v_1))
\tau_2 = \beta(1 - (1 - v_1)(1 - v_2))
\vdots
\tau_n = \beta(1 - (1 - v_1)(1 - v_2) \cdots (1 - v_n))$$

The integral can be written in terms of the new variables as

$$\mathcal{I}_n = (-U)^n \int_{S_n^{0,\beta}} d\tau_1 \cdots d\tau_n \, P(\tau_1, \cdots, \tau_n) = (-U)^n \int_{[0,1]^n} dv_1 \cdots dv_n \, J_{h_n^{0,\beta}}(v_1, \cdots, v_n) P(h_n^{0,\beta}(v_1, \cdots, v_n))$$

The integrand $J_{h_n^{0,\beta}}(v_1,\cdots,v_n)P(h_n^{0,\beta}(v_1,\cdots,v_n))$ is a smooth function on the hypercube $[0,1]^n$.

Evaluation of the numerator

$$\mathcal{J}_n(\tau) = \frac{(-U)^n}{n!} \int_0^\beta d\tau_1 \cdots d\tau_n \, Q(\tau_1, \cdots, \tau_n; \tau)$$
where $Q(\tau_1, \cdots, \tau_n; \tau) \coloneqq (\det \tilde{\boldsymbol{D}}_n^{\uparrow})(\det \boldsymbol{D}_n^{\downarrow})$

$$\tilde{\boldsymbol{D}}_{n}^{\sigma} = \begin{pmatrix} \mathcal{G}_{\sigma}(\tau) & \mathcal{G}_{\sigma}(\tau - \tau_{1}) & \cdots & \mathcal{G}_{\sigma}(\tau - \tau_{n}) \\ \mathcal{G}_{\sigma}(\tau_{1}) & \mathcal{G}_{\sigma}(0^{-}) - 1/2 & \cdots & \mathcal{G}_{\sigma}(\tau_{1} - \tau_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ \mathcal{G}_{\sigma}(\tau_{n}) & \mathcal{G}_{\sigma}(\tau_{n} - \tau_{1}) & \cdots & \mathcal{G}_{\sigma}(0^{-}) - 1/2 \end{pmatrix}$$

- Removal of discontinuities
 - The discontinuities at $\tau_i = \tau_j$ can be removed in the same way as the denominator:

$$\mathcal{J}_n(\tau) = (-U)^n \int_{S_n^{0,\beta}} d\tau_1 \cdots d\tau_n \, Q(\tau_1, \cdots, \tau_n; \tau)$$

- The integrand of the numerator also has discontinuities at $\tau = \tau_i$.
- \implies We first divide the integration domain to n+1 smaller regions, which is labeled by k .

$$\mathcal{J}_{n}(\tau) = (-U)^{n} \sum_{k=0}^{n} \int_{S_{k}^{0,\tau}} d\tau_{1} \cdots d\tau_{k} \int_{S_{n-k}^{\tau,\beta}} d\tau_{k+1} \cdots d\tau_{n} Q(\tau_{1}, \cdots, \tau_{n}; \tau) \qquad S_{n}^{a,b} := \{(\tau_{1}, \cdots, \tau_{n}) \mid a \leq \tau_{1} \leq \cdots \leq \tau_{n} \leq b\}$$

$$k = 0 : \tau \leq \tau_{1} \leq \tau_{2} \leq \cdots \leq \tau_{n},$$

$$k = 1 : \tau_{1} \leq \tau \leq \tau_{2} \leq \cdots \leq \tau_{n},$$

$$\vdots$$

$$k = n : \tau_{1} \leq \tau_{2} \leq \cdots \leq \tau_{n} \leq \tau.$$

The integrand $Q(\tau_1, \dots, \tau_n; \tau)$ is a smooth function on each smaller regions.

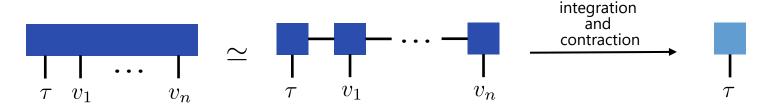
Evaluation of the numerator

- Variable transformation
 - We can use the variable transformations

$$h_k^{0,\tau}: [0,1]^k \to S_k^{0,\tau}; \ (v_1,\cdots,v_k) \mapsto (\tau_1,\cdots,\tau_k) \quad \text{and} \quad h_{n-k}^{\tau,\beta}: [0,1]^{n-k} \to S_{n-k}^{\tau,\beta}; \ (v_{k+1},\cdots,v_n) \mapsto (\tau_{k+1},\cdots,\tau_n) \mapsto ($$

to map each small region to a hypercube.

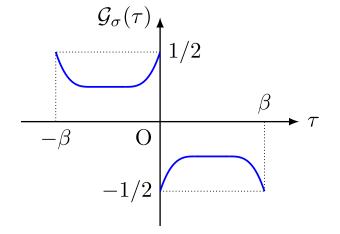
After the variable transformation, the integral can be written as


$$\mathcal{J}_{n}(\tau) = (-U)^{n} \sum_{k=0}^{n} \int_{S_{k}^{0,\tau}} d\tau_{1} \cdots d\tau_{k} \int_{S_{n-k}^{\tau,\beta}} d\tau_{k+1} \cdots d\tau_{n} Q(\tau_{1}, \cdots, \tau_{n}; \tau)
= (-U)^{n} \sum_{k=0}^{n} \int_{[0,1]^{n}} dv_{1} \cdots dv_{n} J_{h_{k}^{0,\tau}}(v_{1}, \cdots, v_{k}; \tau) J_{h_{n-k}^{\tau,\beta}}(v_{k+1}, \cdots, v_{n}; \tau) \tilde{Q}(v_{1}, \cdots, v_{n}; \tau)$$

The integrand $J_{h_k^{0,\tau}}(v_1,\cdots,v_k;\tau)J_{h_{n-k}^{\tau,\beta}}(v_{k+1},\cdots,v_n;\tau)\tilde{Q}(v_1,\cdots,v_n;\tau)$ is a smooth function on the hypercube.

Evaluation of the numerator

$$J_n(\tau) = (-U)^n \sum_{k=0}^n \int_{[0,1]^n} dv_1 \cdots dv_n J_{h_k^{0,\tau}}(v_1, \cdots, v_k; \tau) J_{h_{n-k}^{\tau,\beta}}(v_{k+1}, \cdots, v_n; \tau) \tilde{Q}(v_1, \cdots, v_n; \tau)$$


- How to take the summation over k?
 - (1) Perform TCI algorithm to $\sum_{k=0}^{n} J_{h_{k}^{0,\tau}}(v_{1},\cdots,v_{k};\tau) J_{h_{n-k}^{\tau,\beta}}(v_{k+1},\cdots,v_{n};\tau) \tilde{Q}(v_{1},\cdots,v_{n};\tau).$
 - (2) Perform TCI algorithm to $J_{h_k^{0,\tau}}(v_1,\cdots,v_k;\tau)J_{h_{n-k}^{\tau,\beta}}(v_{k+1},\cdots,v_n;\tau)\tilde{Q}(v_1,\cdots,v_n;\tau)$ for each k and sum after that.
- How to take calculate the τ -dependence?
 - (1) Perform TCI algorithm for each τ .
 - (2) Regard au as an additional leg of the tensor and perform TCI algorithm.

Structure of the weak-coupling expansion

• How to set the maximum order n_{max} ?

$$G_{\uparrow}(\tau) = \left(\sum_{n=0}^{\infty} \mathcal{J}_n(\tau)\right) \middle/ \left(\sum_{n=0}^{\infty} \mathcal{I}_n\right) \simeq \left(\sum_{n=0}^{n_{\max}} \mathcal{J}_n(\tau)\right) \middle/ \left(\sum_{n=0}^{n_{\max}} \mathcal{I}_n\right)$$

Let us approximate the noninteracting Green's function as $\mathcal{G}_{\sigma}(au) \simeq -1/2$.

$$\mathcal{G}_{\sigma}(\tau) \simeq -1/2$$
 \longrightarrow $\mathcal{I}_{n} = \frac{1}{n!} \left(\frac{\beta U}{4}\right)^{n}$

proportional to the Poisson distribution with mean and variance $\frac{\beta U}{4}$.

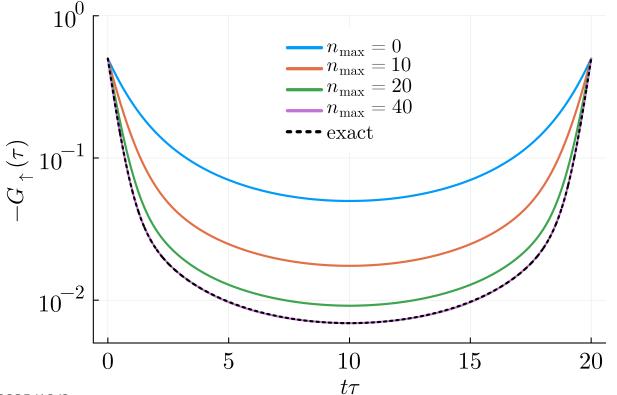
Gaussian distribution

One can obtain the accurate result by setting the maximum order as $n_{
m max} \simeq rac{eta U}{4} + 3\sqrt{rac{eta U}{4}}$.

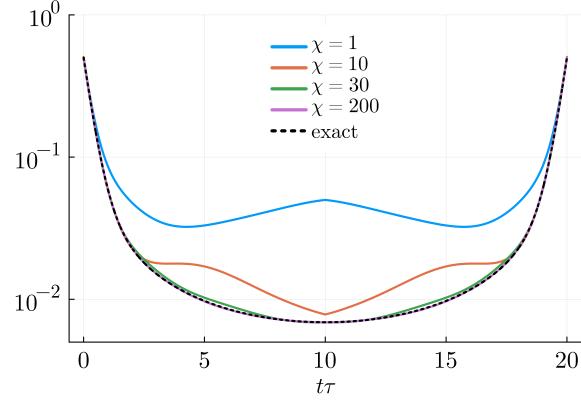
example.
$$\beta = 20, U = 5$$

$$\frac{\beta U}{4} + 3\sqrt{\frac{\beta U}{4}} = 40$$
 \longrightarrow Accurate result is expected when summing up to the 40th order.

Outline

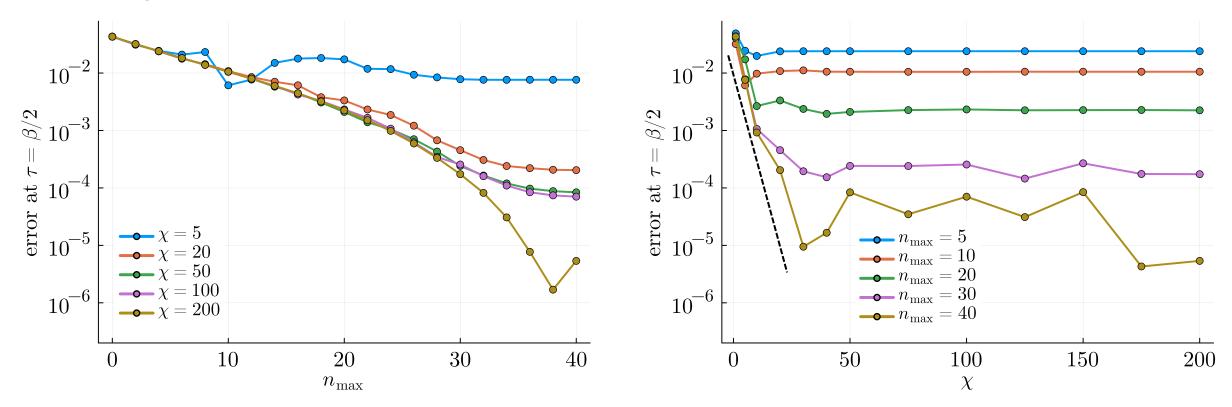

- Introduction
 - Quantum impurity problem and DMFT
 - Impurity solver
- Application of TCI to the impurity problem
 - Evaluation of the partition function
 - Evaluation of the Green's function
- Result
 - Exactly solvable impurity model
 - DMFT for the Hubbard model
- Summary and Outlook

Exactly solvable impurity model


$$H = \sum_{\sigma} \varepsilon_{\sigma} c_{\sigma}^{\dagger} c_{\sigma} + U \left(n_{\uparrow} - \frac{1}{2} \right) \left(n_{\downarrow} - \frac{1}{2} \right) + \sum_{k,\sigma} \varepsilon_{k\sigma} b_{k\sigma}^{\dagger} b_{k\sigma} + \sum_{k,\sigma} (V_{k\sigma} b_{k\sigma}^{\dagger} c_{\sigma} + V_{k\sigma}^{*} c_{\sigma}^{\dagger} b_{k\sigma}) \quad \text{with} \quad \frac{V_{k\downarrow}}{V_{k\downarrow}} = 0$$

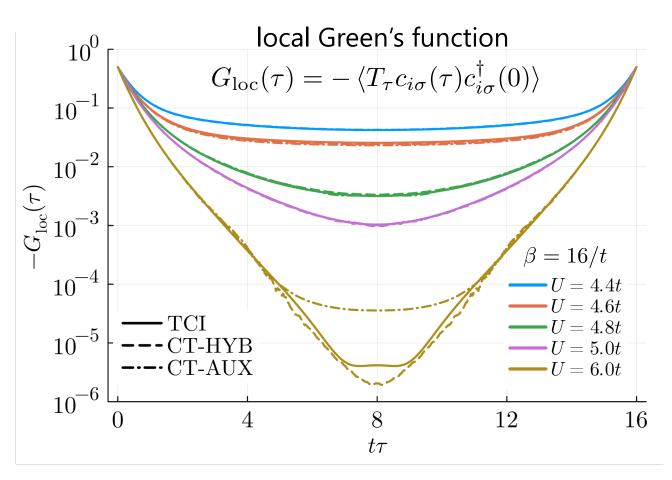
$$\beta = 20, U = 5$$

Matsubara Green's function (The bond dimension is fixed to $\chi=200$)

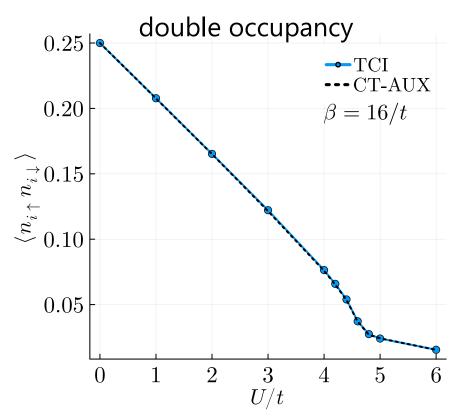


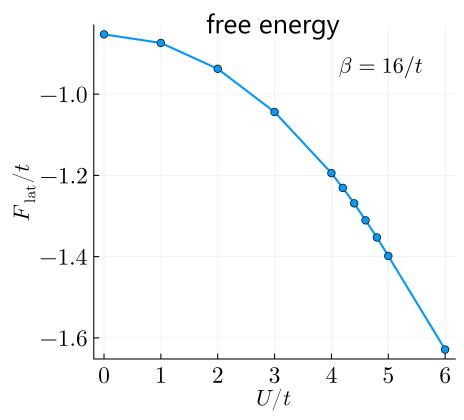
Matsubara Green's function (The perturbation order is fixed to $n_{\rm max}=40$)

Exactly solvable impurity model


Convergence

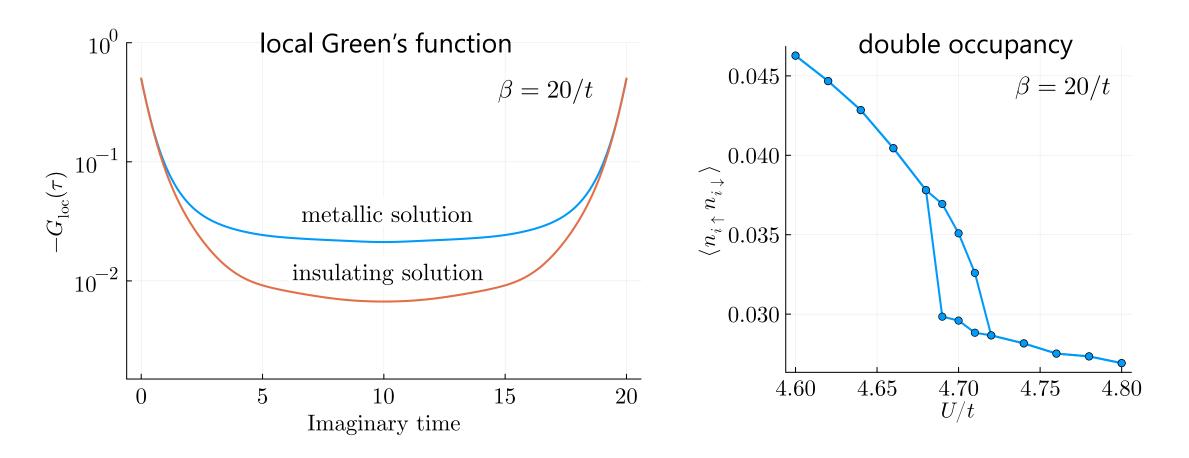
- If the bond dimension is high-enough, the error decreases as the maximum order become larger.
- The error decreases exponentially as we increase the bond dimension χ in the range of $1 \le \chi \le 20$.
- The integrand of the weak-coupling expansion has the low-rank structure.


DMFT for the Hubbard model


$$H = -\frac{t}{\sqrt{z}} \sum_{\langle i,j \rangle,\sigma} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c.}) + \sum_{i} U \left(n_{i\uparrow} - \frac{1}{2} \right) \left(n_{i\downarrow} - \frac{1}{2} \right) \quad \text{on the Bethe lattice with the connectivity}$$

- We first iterate the DMFT loops with $\chi=50$.
- After that, we iterate additional loops with $\chi=200$ to obtain the accurate result.
- Even in the strong-coupling regime, the TCI solver is able to reproduce the result by CT-QMC.

DMFT for the Hubbard model



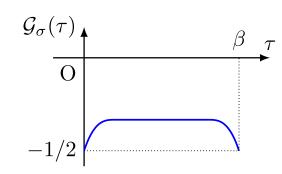
The double occupancy and the free energy can be calculated directly with no additional cost. (←→ CT-QMC methods have difficulty calculating the free energy.)

double occupancy:
$$\langle n_{i\uparrow}n_{i\downarrow}\rangle = \frac{1}{4} - \frac{1}{\beta U} \left(\sum_{n=0}^{\infty} n\mathcal{I}_n\right) / \left(\sum_{n=0}^{\infty} \mathcal{I}_n\right)$$
 free energy: $F_{\mathrm{lat}} = F_{0,\mathrm{lat}} - \frac{1}{\beta} \ln \left(\sum_{n=0}^{\infty} \mathcal{I}_n\right)$

free energy:
$$F_{\mathrm{lat}} = F_{0,\mathrm{lat}} - \frac{1}{\beta} \ln \left(\sum_{n=0}^{\infty} \mathcal{I}_n \right)$$

DMFT for the Hubbard model

- At low temperature, we can find two converged solutions and the hysteresis in the double occupancy.
- Weak-coupling expansion + TCI solver can explore the metal-to-insulator transition.

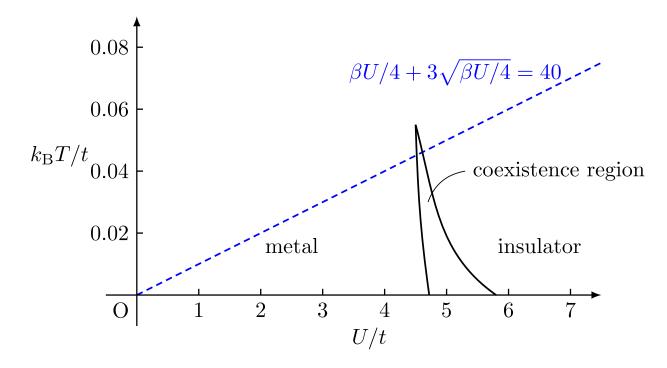

Why does the TCI approach work well?

$$\mathcal{I}_n = (-U)^n \int_{S_n^{0,\beta}} d\tau_1 \cdots d\tau_n \, P(\tau_1, \cdots, \tau_n) = (-U)^n \int_{[0,1]^n} dv_1 \cdots dv_n \, J_{h_n^{0,\beta}}(v_1, \cdots, v_n) P(h_n^{0,\beta}(v_1, \cdots, v_n))$$

- The Jacobian can be analytically written down as $J_{h_n^{0,\beta}}(v_1,\cdots,v_n)=\beta^n(1-v_1)^{n-1}(1-v_2)^{n-2}\cdots(1-v_{n-1})$.
- \longrightarrow The Jacobian $J_{h_n^{0,\beta}}(v_1,\cdots,v_n)$ is a separable function.
- In the strong-coupling regime, the Weiss field $\mathcal{G}_{\sigma}(\tau)$ typically shows a plateau over $0 \le \tau \le \beta$.

$$P(\tau_1, \dots, \tau_n) \coloneqq (\det \boldsymbol{D}_n^{\uparrow})(\det \boldsymbol{D}_n^{\downarrow})$$

$$\boldsymbol{D}_n^{\sigma} = \begin{pmatrix} \mathcal{G}_{\sigma}(0^-) - 1/2 & \mathcal{G}_{\sigma}(\tau_1 - \tau_2) & \cdots & \mathcal{G}_{\sigma}(\tau_1 - \tau_n) \\ \mathcal{G}_{\sigma}(\tau_2 - \tau_1) & \mathcal{G}_{\sigma}(0^-) - 1/2 & \cdots & \mathcal{G}_{\sigma}(\tau_2 - \tau_n) \\ \vdots & \vdots & \ddots & \vdots \\ \mathcal{G}_{\sigma}(\tau_n - \tau_1) & \mathcal{G}_{\sigma}(\tau_n - \tau_1) & \cdots & \mathcal{G}_{\sigma}(0^-) - 1/2 \end{pmatrix}$$



- $ightharpoonup P(\tau_1, \dots, \tau_n) = P(h_n^{0,\beta}(v_1, \dots, v_n))$ is almost constant over the hypercube.
- The integrand $J_{h_n^{0,\beta}}(v_1,\cdots,v_n)P(h_n^{0,\beta}(v_1,\cdots,v_n))$ is an almost separable function.

Current limitation

$$J_n(\tau) = (-U)^n \sum_{k=0}^n \int_{[0,1]^n} dv_1 \cdots dv_n J_{h_k^{0,\tau}}(v_1, \cdots, v_k; \tau) J_{h_{n-k}^{\tau,\beta}}(v_{k+1}, \cdots, v_n; \tau) \tilde{Q}(v_1, \cdots, v_n; \tau)$$

- The summands in $\sum_{k=0}^{n}$ can take both positive and negative values depending on k.
- → Their cancellation leads to the loss of significance digits.
 - The loss of significance leads to the violation of the condition $\mathcal{G}_{\sigma}(\tau) < 0 \ (0 < \tau < \beta)$ when $n_{\max} \gtrsim 40$.

Room for improvement

The most time-consuming part of our algorithm is the evaluation of the Wick determinant.

$$\det\begin{pmatrix} \mathcal{G}_{\sigma}(\tau) & \mathcal{G}_{\sigma}(\tau-\tau_{1}) & \cdots & \mathcal{G}_{\sigma}(\tau-\tau_{n}) \\ \mathcal{G}_{\sigma}(\tau_{1}) & \mathcal{G}_{\sigma}(0^{-})-1/2 & \cdots & \mathcal{G}_{\sigma}(\tau_{1}-\tau_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ \mathcal{G}_{\sigma}(\tau_{n}) & \mathcal{G}_{\sigma}(\tau_{n}-\tau_{1}) & \cdots & \mathcal{G}_{\sigma}(0^{-})-1/2 \end{pmatrix} \det\begin{pmatrix} \mathcal{G}_{\sigma}(0^{-})-1/2 & \mathcal{G}_{\sigma}(\tau_{1}-\tau_{2}) & \cdots & \mathcal{G}_{\sigma}(\tau_{1}-\tau_{n}) \\ \mathcal{G}_{\sigma}(\tau_{2}-\tau_{1}) & \mathcal{G}_{\sigma}(0^{-})-1/2 & \cdots & \mathcal{G}_{\sigma}(\tau_{2}-\tau_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ \mathcal{G}_{\sigma}(\tau_{n}-\tau_{1}) & \mathcal{G}_{\sigma}(\tau_{n}-\tau_{1}) & \cdots & \mathcal{G}_{\sigma}(0^{-})-1/2 \end{pmatrix}$$

- In the CT-QMC solver, the fast update algorithm allows us to calculate these determinants with a cost of $\mathcal{O}(n^2)$.
- In the TCI solver, we did not use such technique, and thus its cost is $\mathcal{O}(n^3)$.
- Can we implement the fast update algorithm for the TCI impurity solver?
- Naively thinking, it is difficult due to the variable transformation.
 - In CT-QMC, only a few numbers of entries in the matrix are updated at each Monte Carlo step.
 - In TCI, a variation in any single parameter v_i results in changes of all entries in the matrix.

Summary and outlook

Summary

- The integrands of the weak-coupling expansion of the Matsubara Green's function have low-rank structures.
- The TCI impurity solver + DMFT enables us to study the metal-to-insulator transition.
- ullet A kind of sign problem which associated with the k-summation restricts the accessible parameter regime.
- The fast update algorithm may accelerate the calculation.

Outlook

- Analyzing the system with a severe sign problem by TCI approach is an important direction.
 - nonequilibrium DMFT
 - cluster impurity problem
 - retarded interaction
 - spin-orbit coupled system