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Background: what is a moiré material?

small twist angle

Plain graphene Twisted angle bilayer graphene

moiré pattern
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Background: moiré materials in labs

Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 43-50. 
Li H, Xiang Z, Naik M H, et al. Imaging moiré excited states with photocurrent tunnelling microscopy[J]. Nature materials, 2024, 23(5): 633-638.
Cai J, Anderson E, Wang C, et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2[J]. Nature, 2023, 622(7981): 63-68.

Twisted angle bilayer MoTe2:

unconventional superconductivity 

Twisted angle bilayer WS2:

fractional Chern insulator

Twisted angle bilayer graphene:

moiré exciton
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Background: tight-binding Hamiltonian

For a 1D fermionic system:

t
U

Tight-binding Hamiltonian:

V

hopping interaction potential

A matrix depending on the size of unit cell
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Background: size of a unit cell for moiré

Plain graphene
2 atoms in a unit cell

Twisted angle bilayer graphene
>10000 atoms in a moiré unit cell
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Motivation: super-moiré materials

2 or even more
moiré coexist

>(10000)2 atoms
in a unit cell 

Hamiltonian with size of 108×108 !



8

The idea of tensor network

An L-site spin-1/2 chain

The state:

The Hamiltonian:

2L

2L

2L

Matrix Product State (MPS)

Matrix Product Operator (MPO)

with bond dimension χ
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A tensor network representation for tight-binding system

normal tight-binding basis:

8-site spinless fermionic chain

L-site MPS:

Can we achieve this compression?

pseudo-spin (quantics) basis:



The general formalism of tensorizing 
tight-binding system
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The trivial single electron Hamiltonian

1D nearest-neighbor (NN) hopping with 
fermionic basis:

2L

2L

equivalent1D NN hopping with pseudo-
spin basis:

But what if it is non-trivial?
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Quantics tensor cross interpolation (QTCI) algorithm

original function matrix product state approximation

Assume one has a function f(x) with 2L x:

binary expression of x

Tensor cross interpolation:

Quantics representation

The QTCI algorithm
Núñez Fernández Y, Ritter M K, Jeannin M, et al. Learning tensor networks with tensor cross interpolation: new algorithms and libraries[J]. SciPost Physics, 2025, 18(3): 104.
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Why we use it?

matrix cross interpolation

only explicitly evaluate
few values

approximation of the 
whole matrix

Núñez Fernández Y, Ritter M K, Jeannin M, et al. Learning tensor networks with tensor cross interpolation: new algorithms and libraries[J]. SciPost Physics, 2025, 18(3): 104.
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Spatially varying NN term as tensor network 

now amplitude as function of x  

Step 1: Acquire the MPS form of t(xi):

QTCI 
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Spatially varying NN term as tensor network 

Step 2: Get the diagonal MPO based on the MPS

Adding extra indices

force si = si’
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Spatially varying NN term as tensor network 
Step 3: Cast the values to the proper position

*



17

A spatially varying potential term:

n(xi) being the particle density

QTCI diagonal MPO 

U

MPO for the on-site potential

Same trick for U(xi)!

Spatially varying on-site potential 
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2D tight-binding systems

Folding of 2D systems:

as 1D chain:

Same trick for:

.....................
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Intra- and inter-chain hoppings

1. Intra-chain hopping:

NN hopping with breaks  

2. Inter-chain hopping:

Long-range hopping, hard to 
build?  
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The shifting operator 

*

The shifting operator

one line up
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The exponential shifting operators

2

Shift elements two lines upShift elements one line up

2

Shift elements four lines up

2

.......... 

Easy realization of exponentially long ranging hopping operators
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What about the interaction term?

t
U V

hopping interaction potential

√ √
?



Workflow of the mean-field algorithm 
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General idea of mean-field treatment

The Hamiltonian:

single-body term

Mean-field approximation:

Mean-field Hamiltonian:

two-body term

single-body term
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Iterations of mean-field calculation

The goal: To get                           and

With initial guess of : 

The mean-field calculation: 

build

acquire

Continue till convergence
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Model used in this research 

Hubbard model:

Mean-field Hamiltonian
for 2 spins:

With initial guesses
of 

electron densities
:

......1st loop 2nd loop converged loop

mixing:

convergence check:
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Kernel polynomial method (KPM)

Suppose f(x) is defined on (-1,1):

Chebyshev polynomials:

The KPM expansion

Weiße A, Wellein G, Alvermann A, et al. The kernel polynomial method[J]. Reviews of modern physics, 2006, 78(1): 275-306.

Chebyshev moments:
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Application of KPM in the mean-field calculation

Local density of state (LDOS) at energy ω and site i:

Electron density at site i:

Chebyshev polynomials of Hamiltonian?
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Chebyshev polynomials of Hamiltonian MPOs

The Chebyshev recursion relation:

...

...

...
2(                           ) -

...
...

In our case:

....................

Identity MPO

Hamiltonian MPO

Easy realization with
contraction & summation
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Acquiration of electron density 

Electron density at site i:

...

...

...

With tensor networks:

...

...

: The MPO “A”

: The state vector
MPS for site i

Do we need to do it for all sites?
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Acquiration of electron density with QTCI

QTCI diagonal MPO 

diagonal MPO for the
electron densities

...

...

...

A function of i!
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Summarized workflow of tensor network mean-field calculation



Results & summary 
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One-dimensional super-moiré system

L = 30

beyond 1 billion sites criteria as 10-3
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Results for the one-dimensional super-moiré system

Results of LDOS
with/without interaction:

Time consumption:
~40000 seconds/11 hours
on a single core of CPU

A super-moiré hopping term: The modulation:
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The accuracy and efficiency benchmarking

With 10 rounds of mean-field
iterations:

Comparison with exact diagonalization:
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Results for the super-moiré square quasi-crystal 
A super-moiré 8-fold interaction term:

The interaction modulation:

The magnetization:
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Results for super-moiré graphene with 231 sites

Plain super-moiré graphene With domain wall

The modulation:

The magnetization:



39

Summary

1. We have developed a general formalism for exponentially compressing most 
common 1D/2D tight-binding Hamiltonians into tensor network form using the 
QTCI algorithm.

2. Based on this formalism, further utilizing KPM method we have developed a 
general methodology for performing mean-field calculation for super-moiré 
systems with over one billion sites (or even more). 

3. Both the formalism and the mean-field methodology could be widely applied 
in various fields, including superconductors, quasi-crystals, etc. (please check 
the posters!)
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The work


